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Subsurface models: then and now

= Physical
: ’fﬁéoreﬁcal
\ Conceptual
juerical

“A model of the Yanaizu-Nishiyama geothermal plant. Japan's 18 geothermal plants account
for only 0.3 percent of its electricity production.”
A. Pollack, Japan’s Nuclear Future in the Balance, New York Times, May 9, 2011.

A model is...

“... a purposeful, simplified representation of
a real system”

“... a simple worldview with an attitude”

“simple and with purpose”:
The model is simple in that it contains only
features of primary importance for the
intended use of the model

Occam’s razor
“Non sunt multiplicanda entia praeter necessitatem”

Make it as complex as needed, ...
but keep it as simple as possible!




System understanding, data availability,
and role of modeling
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Role of Mathematical Modeling

Improve process understanding TOUGH?2
* Understand nonlinearities/coupled processes

* Evaluate non-observable quantities
e What-if scenarios (“virtual sandbox”)

iTOUGH2 =

Design experiments Analyze data

* Identify experimental * Determine parameters from
procedure yielding data that data
contain information about * |dentify model structure
relevant properties

Decision support Make predictions
* Risk assessment * Deterministic/probabilistic
* Sensitivity analysis e Sensitivity analysis

Uncertainty quantification Optimization

Uncertainty drives your modeling,...

Real Data
Parameter Predictive
Estimation Simulation
> Data ® Parameters ®| Predictions
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- TOUGH

Suite of

Nonlsotherm ],Multiphase Flow
and Transpo" S_;_’mulators

TOUGH2

multi-dimensional 0D, 1D, 2D, 3D iTOUGH2
multi-phase liquid, gas, NAPL, solid ) MPIiTOUGH2
multi-component water, NCG, VOC, RN, ... 'TOUGflz'P‘.’M
non-isothermal heat parameter estimation

. sensitivity analysis
flow and transport multi-phase Darcy law v ¥

fractured-porous dual-f, dual-k, MINC, ECM, DFN e sl e

—— aVam @
TOUGHREACT TOUGH-FLAC PEST
+ reactive TOUG H-ROCM ECH ¢>
Homi . Protocol
geochemistry + geomechanics

< Z 592 @
TOUGH+ TOUGH-MP T2WELL

external
+ hydrates + parallel + wellbore .
+ shale gas simulator simulators
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Forward Modeling

p* contains n measured parameters z contains calculated system response
(prior information) at m calibration points
-
(@]
S
Measured ::> Forward :> Estimated | &
parameters model system state| @
3
®
m.
o
. s
Estimated <:| Inverse <:| Measured &
parameters model system state| ™
s
p contains n parameters z* contains observations
to be estimated at m calibration points

e Mathematical model G relates parameters p to
observations z G(p)=z

e Observations have noise:

z=G(p)+e=1z, +¢€

true

e Forward problem: find z given p
e Inverse problem: find p given z
p=G"*(2)

e Model identification problem:
find G given examples of p and z

e Discrete inverse problem: z is a vector of
observations at discrete points in space and time
(“calibration points”)




e Inverse modeling = parameter estimation =
model calibration = history matching = curve
fitting = regression (= optimization = filtering)

e distinction is largely irrelevant

e preferred terms in different disciplines:

— inverse problem: generally many parameters; ill-
posed; geophysics; imaging; applied mathematics

— parameter estimation: generally few parameters;
well-posed; hydrogeology

— model calibration: process modeling

— history matching: reservoir engineering
— curve fitting: data analysis

— regression: statistics

iTOUGH2 flowchart
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Running TOUGH?2 once is tough;
running it many times is iTOUGH2 L1&

input parameter set p PEST

TOUGH2

file

output variables z

instruction

further analyses file

Inverse modeling ingredients

Parameters p Parameterization
Data z* Joint inversion
Forward operator z(p)

Objective function S(z*-z(p))

Minimization algorithm min S(p)

A

Sanity check S i Op O, uncertainty analysis

min’




ing‘r»e_djerjtv #1:

ameters

So many parameters...so little oy time!

Parameterization s eI 5
— Properties :
— Structure

— Forcing terms
— Conceptual errors 620
— Joint estimation of properties, structure, forcing terms, errors
Occam’s razor

— as complex as needed — .
) . Find x
as simple as possible
— Start simple and add complexity B
— Start complex and simplify
Parameter selection

— Sensitivity
— Independence
— Superparameters

SIMPLICITY
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Different models created by different geologists for the same region (courioux ctal., Experience from 30

cartography training sessions. Implication for uncertainty factors identification. 34th International Geological Congress, August 5-10, 2012, Brisbane, Australia)

Joint analysis of structural and property data

reduces estimation and prediction bias

Wellmann et al., C&G (2014)

Control points
and uncertainty
ranges (approx.)

* Parameterize geologic structure at control points

* Develop integrated workflow from structural
geologic data to discretized reservoir model

* Jointly estimate structural geometry and
reservoir properties

Geological and
Geophysical data
.

o°
n
Geological modelling

Continuous geological model

\

n
Meshing, property distribution

Rock properties

=

Solver, Be's, initial conditions.

Results of simulation

11



ingredient #2: -

 observations

Want more parameters?
Give me more data!

The more
high-quality,
sensitive,
complementary,
consistent
data, the better

12



mixing ingredié‘nts #1 and #2:

 sensitivity analysis -

* Local sensitivity analysis
— Requires (only) n+1 (parallel) runs R M
— By-product of derivative-based
minimization algorithms
— Many useful composite measures on
parameter influence and data worth

Sensitivity toParameter

+ Morris One-At-A-Time 4 %
— Requires r(n+1) runs OO rereeerrerreee e
— Identifies influential and L= .
non-influential parameters =
— ldentifies nonlinearity and interaction 2

effects

* Sobol’/total sensitivity indices
— variance/sampling based

Identifies contribution of uncertain L
parameter to prediction uncertainty

Fix one parameter — vary all the others
Vary one parameter — fix all the others

Sgas

Time, yr
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Schoups and Vrugt, WRR, 2010; Finsterle and Zhang, C&G, 2011




ingredien't #4:

_ minimizatio
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ingredient #5:

% uncertamty analyses

jor f.;fu . certamty
‘ _data-worth analysis
_luncertamty propagation

Why residual and
uncertainty analysis?
» Parameter estimates may be worthless if:

— Model does not match the data, i.e., is an unlikely
representation of the true system
goodness-of-fit, Fisher Model Test

— Estimates are biased by systematic errors or
outliers in the data
residual analysis

— Estimation uncertainty is large

C,» correlation coefficients

— Solution is non-unique or unstable

— Predictions are highly uncertain a4

17



Residual and Uncertainty
Analysis

Pressure

Cumulative Seepage [kg]
Eame e

e i

d !
0 4 8 @ 16 20 240

35

Calibration Error

L
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overfitting
v

Degree of Model Complexity
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Success Criteria

« Captures salient features of system behavior
(expert judgment)

» Acceptable match
(goodness-of-fit criteria)

» Acceptable estimation uncertainty
(determinant of estimation covariance matrix)

« Ability to make acceptable predictions
(validation acceptance criteria)

« Combination
(model identification criteria)

> Depends on study objectives

> Use as criteria for test design!

37

Textbooks

e Aster et al., Parameter Estimation and Inverse
Problems, 2" Ed., Academic Press, 2013.

e Hill and Tiedeman, Effective Groundwater
Model Calibration, With Analysis of Data,
Sensitivities, Predictions, and Uncertainty,
Wiley, 2007.

e Saltelli et al., Global Sensitivity Analysis, The
Primer, Wiley, 2008.

38
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—-yourcourse

Course Objectives

General:  Provide participants with conceptual
understanding, theoretical background, and practical
experience in solving simulation-optimization problems in
geosciences and engineering using iTOUGH2.

Lectures: Understand optimization and uncertainty
guantification:

» Fundamental concepts

» Theoretical basis

» Practical approaches

» Interactive discussions

Computer Exercises: Gain experience using iTOUGH2

Course Project: Define and develop a simulation-optimization
problem of interest to you

40
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g
iTOUGH2 Short Course

Lawrence Berkeley National Laboratory
Earth Sciences Division
Berkeley, California

Tutorial Problem:
Darcy

e Objectives:

Parameter Estimation Problem:

Understand main iTOUGH2 concepts

Get familiar with key iTOUGH2 input
blocks

Get familiar with iTOUGH2 output file

Examines impact of measurement noise
on estimates

Requires some knowledge of TOUGH?2
simulator

Estimate 3 parameters...

...based on transient pressure and flow-
rate data...

...using Levenberg-Marquardt

Time

minimization algorithm

42
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Variations of Darcy Problem

» darcy1i: run forward problem

» darcy2i: inversion with perfect data (nonoise.dat)
 darcy3i: inversion with noisy data (noisy.dat)

» darcy4i: explore

« darcybi: grid search

« darcy6i: Morris global sensitivity analysis

« darcy7i: Saltelli/Sobol’ global sensitivity analysis

» darcy8i: Monte Carlo (LHS) uncertainty
quantification

43

iTOUGH2-PEST Tutorial Problem:
Polynomial 4

* Objectives: N
— Understand main iTOUGH?2 =

concepts “r ‘ ‘

— Get familiar with PEST protocol

— Get familiar with key iTOUGH?2
input blocks

— Get familiar with iTOUGH2
output file

| |

| |

| |

| |

20— ——— T - - - - - - - -

[ | |

| |

|

| 1

e Parameter Estimation Problem:

— Estimate coefficients of
polynomial...

— ...using Levenberg-Marquardt
minimization algorithm “

22



e Objectives:

Tutorial Problem:
CO, Injection

— Understand main iTOUGH2 concepts

— Get familiar with key iTOUGH?2 input blocks

— Get familiar with iTOUGH2 output file

— Requires some knowledge of TOUGH?2
simulator (module ECO2N)

e Analyses performed:
— Forward simulation
— Sensitivity analysis
— Data inversion

Uncertainty propagation analysis

H=10m

«

CO, Injection

P =120bar
T =45°C
Sei =0%

k =1013m?
f =12%

Monitoring Well

45

Five-Spot Geothermal

Injection-Production Problem

e Objectives:

— Understand main iTOUGH2 concepts

— Get familiar with key iTOUGH2 input blocks/

commands and output files

— Requires some knowledge of TOUGH2
simulator (module EOS1)

e Exercises:

1. TOUGH2 simulation with iTOUGH2
2. Generation of synthetic data

3. Defining parameters and performing

sensitivity analysis

4. Inversion of synthetic data

5. Uncertainty propagation analysis

6. Explore

A

/(f Injection

Production

<+—1000 Mm———»

46
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Standard iTOUGH2 Samples and
Installation Test Cases

samplel-7:
Problems

sampleLOCAL:
sampleGLOBAL:
sampleGS:
sampleGSLIB:
sampleMOAT:
samplePARALLEL:
samplePARETO:
sampleREGION:

see report iTOUGH2 Sample

local minimization algorithms
global minimization algorithms
user-specified sets (eos7c)
geostatistics

Morris global sensitivity analysis
parallel execution

Pareto frontier using iTOUGH2-PEST
Permeability region

47
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Formulate Optimization Problems

Parameters Observations

Objective Function

Problem A:

Problem B:

49

25
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iTOUGH2 Short Course

Lawrence Berkeley National Laboratory
Earth Sciénces Division
Berkeley, California

Forward model definition

Inverse model definition

> Parameters

> Observations measured estimated

> Control Parameters parameters parameters

unknown, £
orward

EEREEI B true system B

behavior model

measured calculated
system system
response response

best

objective
function

maximum residual and
likelihood error
theory analysis

estimates




Elements of iTOUGH?2
Input Language
e Text-based; structured command input language

¢ Command Level Markers
>, 5>, >>>, >>>>
<, <<, <<<L, <<<<L

Commands and optional keywords
>> TIME in MINUTES

: Parameter Value

>>> ELEMENT: ELM 1 ELM 2
>>>> VARIANCE: 10.0

Commands and keywords are case-insensitive

First-Level Commands

> PARAMETER
identifies parameters to be estimated
(refers to input to forward model)

> OBSERVATION

defines calibration points in space and time and
reads related measured data

(refers to output from forward model)

> COMPUTATION
program options, computational parameters




> PARAMETERS

e Select parameters to be estimated or analyzed

e These parameters are a (potentially transformed) subset of input
variables to the forward model

¢ The selected parameters are the n entries of the parameter
vector p

> PARAMETERS
>> specify parameter type
>>> specify parameter domain
>>>> provide details
<L
<L
<<

> PARAMETER
Example

> PARAMETER
>> ABSOLUTE permeability

>>> MATERIAL: SAND1
>>>> LOGARITHM
>>>> RANGE: -14.0 -10.0
>>>> INDEX: 3 (vertical)
>>>> initial GUESS: -12.0
>>>> standard DEVIATION: 0.5
<L




> OBSERVATIONS

¢ Select observations used to estimate parameters

¢ These observations refer to output variables from the forward
model and to the corresponding measured data

¢ The selected observations are the m entries of the observation
vectors z (calculated) and z* (measured)

> OBSERVATION
>> specify calibration TIMES
>> specify observation type
>>> specify location
>>>> provide details
>>>> provide DATA
<L
<<
<<

> OBSERVATION
Example

> OBSERVATION
>> TIMES: 100 LOGARITHMIC MINUTES
1.0 1440.0
>> GAS FLOW RATE
>>> CONNECTION: ABC99 0OUT99
>>>> FACTOR: -1.0
>>>> RELATIVE: 10%
>>>> DATA on FILE: ggas.dat
<L




> COMPUTATION

> COMPUTATION

>> program OPTIONS

>> STOPPING criteria

>> JACOBIAN

>> ERROR analysis
>> OUTPUT options

<<

> COMPUTATION
Example

> COMPUTATION

>> program OPTIONS

>>> LEVENBERG-MARQUARDT
>>> PEST

<L

>> STOPPING criteria
>>> ITERATIONS: 10
>>> ignore WARNINGS
>>> STEP: 5.0

<L

>> JACOBIAN

>>> CENTERED

>>> PERTURB: 1 %
<L

>> ERROR analysis
>>> ALPHA: 5 %
>>> MONTE CARLO
<L
>> OUTPUT options
>>> OBJECTIVE FUNCTION
>>> SENSITIVITY matrix
>>> NEW OUTPUT
>>> FORMAT: COLUMN
>>> MINUTES
<L
<<




Commenting
¢ Lines without a command level marker (> or <)
are considered comments.

e Any text other than commands or keywords
acceptable as comment.

e Commenting out a single line:
# infirst column
e Commenting out multiple lines (block):
/ * Beginning of block
* / End of block
e INCLUDE FILE: file name
e ECHO ON/OFF (echoes commandsto msg file) .,

Running iTOUGH2 (Unix)

itough2 it2 file name t2 file name IEOS &

T 0 T

command iTOUGH?2 TOUGH2 EOS
input file input file module
(inverse problem) (forward problem)
Examples:

itough2 (command usage and options)

itough2 darcyi darcy 3 &

itough2 -mesh -i test.inc testi test 9 &
itough2 -pest it2 control file &




Running iTOUGH?2 (PC)

Copy appropriate iTOUGH2 executable (e.g., 1T2 3.exe
or iT2 PEST.exe) from directory Executable to
working directory and double-click on it

Type name of iTOUGH2 input file (e.g., darcyli)

Type name of TOUGH2 input file (e.g., darcy; no forward
file needed if iT2_PEST is used)

To run a forward problem only, provide a dummy
iTOUGH2 input file (e.g., invdir, or an empty file)

You may install batch files (tough2 .bat and
itough2.bat) to conveniently run iTOUGH2 from a
DOS Command Prompt using Unix syntax.

Running iTOUGH2 on PC using Batch File

e Locate directory Executable, which contains the
itough2.bat batch file and executables it2 EOS#.exe
e Add directory name to command search path:
— START, Control Panel, System
— Open Advanced tab, click on Environment Variables

— Under System variables, scroll to variable PATH, select it and
click on Edit

— Append a semicolon “;” followed by the full path to the
Executable directory

— Click OK
e Open a DOS-PROMPT window, e.g.,
— START, All Programs, Accessories, Command Prompt

— Change directory (cd) to your working directory with the
iTOUGH?2 input files, and use the itough2.bat file, e.g.:

itough2 darcyli darcy 3 1




Resources

e iTOUGH2 User’ s Guide

e iTOUGH2 Sample Problems

e iTOUGH2 Command Reference

® iTOUGH2 Universal Optimization using the PEST Protocol
e iTOUGH2 GSLIB User’ s Guide

e Parallelization of iTOUGH2 using PVM

e http://esd.lbl.gov/iTOUGH2

¢ TOUGH Symposia; Short Courses

e Bibliography

e User forum: http://tough.forumbee.com/

Textbooks

e Aster et al., Parameter Estimation and Inverse
Problems, 2™, Ed., Academic Press, 2013.

e Hill and Tiedeman, Effective Groundwater
Model Calibration, With Analysis of Data,
Sensitivities, Predictions, and Uncertainty,
Wiley, 2007.

e Saltelli et al., Global Sensitivity Analysis, The
Primer, Wiley, 2008.
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TOUGH: Suite of Simulators for Nonisothermal Multiphase
Flow and Transport in Fractured Porous Media

The TOUGH (‘Transport Of Heat')
numerical models for simuating the coupled transport of water, vapor, non-condensible gas, and heat in porous
and fractured media. Developed at the Lawrence Berkeley National Laboratory (LBNL) in the early 1980s primarily
for geothermal reservoir engineering, the suite of simulators is now widely used at universities, government

pp to remediation problems,
energy production from geothermal, il and gas reservoirs as well as gas hydrate deposits, geological carbon
sequestration, vadose zone hydrology, and other uses that involve coupled thermal, hydrological, geochemical,
‘and mechanical processes in permeable media. The TOUGH sute of simulators is continually updated, with new

, and refined descriptio the TOUGH

framework (see the overview of the TOUGH development history). Notably, an EOS property module for mixtures
of water, NaCl, and CO; has been developed and is widely used for the analysis of geologic carbon sequestration
processes.

Below you will ind a quick summary of the suite, with links to more detailed information on each:

fractured porous media.

Although nuclear waste isolation,
toa wider heatand andin the
ing of porous materials. The i
To describe heat flow is
used,
and sensible heat, between liq apor.
i i pressure, d gravity forces
the phases relative
permeabilty functions. The code includes Kiinkenberg effects and binary difiusion in the gas phase,
and for the liquid pha of
) tion, and binary

difiusion, which includes both sensible and latent hea.

Features & Capabiliies | Licensing & Download | Documentation

User Forum

Search Q
Welcome to the TOUGH user forum! Separate forums are set up around each of the CATEGORIES
simulators. Ask questions, provide answers, share tips, and make suggestions.  Forums
TOP CONTRIBUTORS
FORUMS
TOUGH2 T2voC
© Question on modeling landfil gas migration © Solubilty units - SOLA

© One question on outputting flow rate of aqueous © No dispersivity?
( Questions on NAPL volatie and dissolution

TOUGH2-MP

© How should | compile TMVOC and use executat © Runtime error with TOUGH2-MP (Allocatable ve:

 An error of test problem # 7: CO2 layered forma
Who use MOP(14) is one?

110

TOUGHREACT TOUGH+

© Question about constant rate
) whatif a primary species is not defined in the da
What does negative H+ concentration mean in T

topics
ITOUGH2 Pre & Post Processors
© hi, I gotinteresting reseult sensario forecasting v () Do you need a pre- and post-processor for toug
Monte Carlo simulation crash using ITOUG2 Anyone has used PyTOUGH for TOUGH2-MP?
(O Estimating water saturation in a water zone above 5,
4topics
Help Articles Questions & Answers
TOUGH Tips & Tricks 3) About TOUGH+HYDRATE
Instaliation of TOUGH2-MP with METIS Version ) What does the core module do?
Wrong end-of-line character leads to compilatior 3) How do | know which module | need?
4topics




TOUGH

Search Citation

Journal

Choose a value... ¥

TOUGH Module

Choose a value...

Research Area

Choose a value...

Year M General
IR  — ] W Geothermal
2,013.0 Rl 4
TOUGH Research
Journal Year Citation
Module Area
Castelletto, N., Teatini, P., Gambolati, G., Bossie-
Codreanu, D., Vincké, O., Daniel, JM., Battistelli, A.,
| | AdvancesinWater | . Marcoini, M., Donda, F., and Volpi, V., (2013). TouGH? Carbon
Resources Multiphysics modeling of CO2 sequestration in a faulted Storage

m [OSWSRNPNR  iconsing & Download  Events  User Support Search...
TOUGH Publications i

Publications per TOUGH Module

W TOUGH+

M TOUGH-FLAC
TOUGHMP

W TOUGH2

M TOUGHREACT

W iTOUGH2

Publications per Research Area

1M Carbon Storage

M Environmental Rem.
Fracture Hydrology

saline formation in Italy, Advances in Water Resources,
doi: 10.1016/j.advwatres.2013.04.006 .

Doetsch, J., Kowalsky, M.B., Doughty, C., Finsterle, S.,

Ajo-Frankin, J.B., Carrigan, C.R., Yang, X., Hovorka, 19
iTOUGH2 Command Index
[ Berkeley Lab (Univ of Calfornia) Mail -1... [ iTOUGH2 Hoghe
A This is the iTOUGH2 command index in logical order. Click on any command for a description of the command syntas, the name of the
‘parent command, the name of subcornmands, as well as the purpose and effect of the command along with an ilustrative exaruple.
A There are three main blocks in the iTOUGH2 input file, identified by one of the following first-level commands:
© > PARAKETER
e — ® > OBSERVATION
T w GH o > compuTaTION
. The first block (frst-level command > PARAMETER) is used to identify the TOUGH2 input parameters that will be subjected to
symposium ‘parameter estimation, sensifivity analysis, or uncertainty propagation analysis. The second block (first-level command > OBSERVATION) s
2 o 0 9 used to identify the TOUGH2 output variables that will be compared to observed data for model calibration. The third block (first-level
iTacan 4
iT =
TOUGH iTOUGH2 Bibliography
o Jounal Asticles
Contents o Conference Presentations
® Reports
o Tntroduction * Other Publications
e o Scirus search
® Flow Chart
* Forward Model
® Parameters Journal Articles =
® Observations
-+ Obieetive Functi o Lanyon, G.W., and R Senger, & structured approach to the derivation of effective properties for combined water and gas flow i the
ective Tunchion . EDZ, Transport in Porous Media, doi10.1007/511242-011-9716-y, 2011
® Minimization il
Algorithm o Birkholzer, JT., Q Zhou, A Cortis, and §. Finsterle, A sensitivity study on regional pressure buildup from large-scale CO2 storage
o Error Analysis o S projects, Enrgy Procedia, 4, 4371-4378, 2011
Etror Analysis
© Py« Finsert, 5, and Y. Zhang, Solving TOUGHL simulation and optimization problems using the PEST protocel, Enviranmental
o Ui Modelling and Software, 20, 959-968, 10.1016/; envsoft. 2011.02.008, 2011
®_Command Index
 Piblosranh T o Finsterle, 5., and M B. Kowalsky, A truncated Levenberg-Marquard: algorihun for the calibration of highly parameterized norlinear
P —r tmodels, Computers and Geosciences, doi:10.1016/}.cageo.2010.11.005, 2011
o {T]
“d o Finsterle, S, and Y. Zhang, Error handiing sirategies in multiphase inverse modeling, Computers and Geosciences,
o {Ij doi10.1016.cageo.2010.11,009, 2011
® Licensing o {I]
o Updates oDl ®Tung Y. P Imhoff, and S. Finsterle, Estimation of landll gas generation rate and gas permeabilty field of refuse using inverse
Spoales v = modeling, Transport in Porous Media, doi:10.1007/s11242-010-9659-8, 2011 “A 2

Done
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http://esd.Ibl.gov/ TOUGH2
Software Documentatio.x Licensing & Download “Zvents User Support
Price List of Available TOUGH Software
TOUGH . Su ite Off| clck on the name of a software package to see st of availsble modules and their prices, to download manusls,
and to place an order. Check license agreements below before ordering software.
Flow and Transport TouGH+ TOUGH+ simulator, serial and parallel versions (currently, only the TOUGH+HYDRATE
module is available)
The TOUGH ("Transport Of Unsaturated Grou| LOUGH2-MP Massively parallel version of various TOUGH2 modules
coupled transport of water, vapor, non-condent Various modules of iTOUGH? for sensitivity analysis, parameter estimation, and
Laboratory (LBNL) in the early 1980s primarily iTOUGH2 » Purchase Now!
" Other TOUGH-Related
govemment organizations, and private industry - Price
from geothermal, oil and gas reservoirs as wel Codes Software  Version Description  Manual i Commen U8 Givernmmer
. . Eree Software
involve coupled thermal, hydrological, geocher source e source
updated, with new equation-of-state (EOS) mo| Lj i iTOUGH2 Core
" o 3 .
the overview of the TOUGH development hist Before downloading TOU ITOUGH2 Core 6.5 gﬁ::dhsa;gdbii QQ_GGHUZMEL&_E s $3600 N/A $1200 N/A $0 N/A
widely used for the analysis of geologic carbor| Certain supporting softw; addition to at o
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heat Guide
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Oil Guide

gy
iTOUGH2 Short Course

Lawrence Berkeley National Laboratory
Earth Sciences Division
Berkeley, California

Thpeoang e

g




What’s good for TOUGH2 3
may also be good for other codes

input parameter set p PEST

v
TOUGH?2

template
file

output variables z

y 3 3

i instruction

further analyses file

23

iTOUGH2-PEST: General Concept

e Forward model (“My_Model”) and optimization
routines (iTOUGH2) are separate codes

e Exchange of information occurs through ASCI/ input
and output files using the PEST protocol

e What iTOUGH2-PEST does:

— Writes forward model input file(s) with changed parameter
values = Template File

— Calls forward model

— Extracts select observable variables (“observations”) from
forward model output file(s) = Instruction File

e Template and Instruction Files identical to PEST
[Doherty, 2009; ]

® iTOUGH2 input file replaces PEST Control File o

12



PEST Template File (10f4)

e Writes input file(s) for My Model, including
input from redirected (“<“) keyboard

e |dentifies parameters to be changed by
optimization routines

e Same parameter may occur multiple times in a
template file

* One template file for each input file that contains
an adjustable parameter

25

PEST Template File (2 of 4)
e Copy your input file to input_file.tpl

e Add header ptf #
-ptf PEST template file
- # parameter delimiter (any special character)

e Replace parameter values by parameter name
surrounded by parameter delimiters

— Parameter name: max. 12 character
case insensitive

— Example: Radius = # pipe_ radius #

e Use same parameter names in > PARAMETER
block of iTOUGH2 input file

26
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PEST Template File
Example (30f4)

2
y=a,+a,x+ax

¢ Input file of code POLYNOM e Corresponding template file

ptf #
Polynomial of degree: 2 Polynomial of degree: 2
Coefficient 1: 0.5000000E+00 Coefficient 1: #coeff0 #
Coefficient 2: 2.0000000E+00 Coefficient 2: #coeffl #
Coefficient 3: 1.5000000E+00 Coefficient 3: #coeff2 #
Evaluate polynomial at : 5 points Evaluate polynomial at : 5 points
0.25 0.25
0.50 0.50
1.00 1.00
1.50 1.50
2.00 2.00
27
PEST Template File (4 of 4)
e Relate template file(s) to input files(s) in iTOUGH2
block > COMPUTATION
e Example:
> COMPUTATION
>> OPTION
>>> PEST
>>>> number of TEMPLATE files: 2

stdinp. tpl keyboard
polynomial.tpl input.dat

28
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PEST Instruction File (1 of 7)

Parses through My _Model output file(s)
or redirected (“>") screen output

Finds and extracts observable variables

Each observable variable may occur
only once in an Instruction File

One Instruction File for each output file
that contains observable variables

29

PEST Instruction File (2 of 7)

Header line: pif @
- pif PEST instruction file

- @ marker delimiter;
marker delimiter must not occur in marker text

Use search directives to find observation

Instruction lines must start either with a Primary Marker,

a Line Advance, or the continuation character (" & )

Instructions pertaining to a single line on a model output
file are written on a single line of an instruction file.

Observation names (max. 20 characters) must be
identical to those used in the iTOUGH?2
> OBSERVATION block

30
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PEST Instruction File

Search Directives (3

of 7)

Instruction Item

Description

Example Instruction

Primary Marker

Marker at beginning of instruction line.
Bracketed by Marker Delimiter

QOUTPUT(E

Secondary
Marker

Marker that does not occupy first instruction item.
Searches within current line from left to right.
Advances to next line of not found.

@QOUTPUT@ QTIME IS@

Line Advance At beginning of instruction line. 11
Ln advances by n lines L56
Observation Unique name identifying observation; argl
Name maximum 20 characters long; v2
any ASCII characters except for [, 1, (, ), or the obs3
marker delimiter character. pressure at X=4
conc-after-5-year
Dummy Dummy observation can be used to navigate line by 11 !dum! !dum! !sat!
Observation reading non-fixed observations; however, values are
not extracted.
The observation name for dummy variables must be
dum.
31
Search Directives (4 of 7)
Instruction Description Example Instruction
Item
Whitespace Moves cursor forwards from its current position @DEPTH =@ w w !p!
until it encounters the next blank character, and
then moves the cursor forward again until it finds a
nonblank character, finally placing the cursor on the
blank character preceding this nonblank character.
Tab Places cursor at a user-specified character position @DEPTH =@ t56 !p!
on current model output file line.
Fixed Reads observation between columns nl and n2. 11 [pres]l3:25
Observation Observation name in brackets; column numbers
separated by colon; no spaces
Semi-Fixed Reads observation that is contained, starts, orends | 11 (pres)19:20
Observation somewhere between columns nl and n2.
Observation name in parentheses; column numbers
separated by colon; no spaces
Non-Fixed Reads observation in free format at current 18 w !pres!
Observation location. 18 !dum! !dum! !
Observation name between exclamation points. pres!
15 *=* lsat! *&*
32
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Reading Observations in PEST (5 of 7)

(Output File)

12
12
12
12

————|====l--==|====2-=—=— | ====3——== | ———- 4
e et EEEY IS B [T ey PSS
pif @ (Instruction File)
Fixed: []
12 [obs]30:37 [ obs ]
Semi-Fixed: ()
(obs)25:40 ( obs )
(obs) 32:36 (obs)
(obs)25:32 ( obs )
(obs) 33:40 ( obs )
Non-Fixed, free format: !!
12 ww 'obs! ! obs !
12 t27 'obs! ! obs !
12 @.8@ !'obs! ! obs !
12 'dum! 'obs! ! obs !

to extract
this number
from the
output file ...

... use one of
these options
in the
instruction
file

33

PEST Instruction File
Example (60f7)

e Qutput file

e |nstruction file

soes |oeosilosss (| seosBooss (| emesd pif @
Simulation Output File

Iteration 1 Time =

Iteration 5 Time =
Depth

1

SJouohkse Wi

.00
.00
.00
.00
.00
.00
.00

0.

1.

2 years

0 years

Pressure

1

o UL NDNNPR

.21072
.51313
.07536
.95097
.19023
.87513
.08115

12 [presl]20:27
11 (pres2)11:25
11 t20 !pres3!
@ 4.00 @ !'pres4!
1l ww !'pres5!
12 !'dum! !'pres7!

@Iteration@ @1.0 years@

34
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PEST Instruction File (7 of 7)

e Relate instruction file(s) to output files(s) in iTOUGH2
block > COMPUTATION

e Example:

> COMPUTATION
>> OPTION
>>> PEST
>>>> number of INSTRUCTION files: 2
stdout.ins screen
polynomial.ins output.dat

35

Calling Executable from iTOUGH2

e Provide executable, command, script or batch file
iTOUGH2 block > COMPUTATION

e Use quotes if command consists of multiple words
e Example:

> COMPUTATION
>> OPTION
>>> PEST
>>>> EXECUTABLE: myModel.exe
or
>>>> EXECUTABLE: Run-ModelA-and-ModelB.bat
or
>>>> EXECUTABLE: UnixScript.sh
or
>>>> EXECUTABLE: “a.out < keyboard > screen”
or
>>>> EXECUTABLE: “octave my matlab_code.m”

36

18



> COMPUTATION,

iTOUGH?2 Block

>> OPTION, >>>PEST

> COMPUTATION
>> OPTION

>>> PEST

>>>>

>>>>

>>>>
>>>>
>>>>
<L
<L
<<

TEMPLATE: number-of-template-files
template-file-1.tpl

template-file-ntpl. tpl

INSTRUCTION:

input-file-1

input-file-ntpl

number-of-instruction-files (NO DELETE)
instruction-file-1.ins output-file-1

instruction-file-ntpl.ins output-file-nins

EXECUTABLE:
PRECISION
DECPOINT

executable-name (BEFORE/AFTER)

: SINGLE/DOUBLE
: NOPOINT/POINT

37

iTOUGH2 Block
> PARAMETER,

>> PEST

> PARAMETER
>> PEST
>>> NONE
>>>>
>>>>
>>>>
>>>>
<L
<<
<<

Generic Format

NAME : parameter-name

GUESS : initial-parameter-value
PRIOR : prior-information-value
other fourth-level commands

or ...
required

> PARAMETER
>> PEST
>>> NONE
>>>>
>>>>
>>>>
>>>>
<L
<<
<<

NAME
LOGARITHM
GUESS
RANGE

Example

: coefficient-A

-3.0
-6.0 0.0

38
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iTOUGH2 Block

> OBSERVATION, >> PEST

Generic Format

> OBSERVATION
(TIMES block not required)

>> PEST
>>> UNIVERSAL/MODEL/NONE (: data-set-name)
>>>> DATA
observation-name-1 value-1 (weight-1)
observation-name-2 value-2 (weight-2)
observation-name-... value-... (weight-...)

>>>> other fourth-level commands
<L
<L
<<

39

iTOUGH2 Block
> OBSERVATION, >> PEST

Example
> OBSERVATION
>> PEST
>>> UNIVERSAL
>>>> ANNOTATION : Total Costs
>>>> DATA
capital-cost 0.0
operating-cost 0.0
>>>> WEIGHT : 1078 [KOW/USS]
<L

>>> UNIVERSAL: pumping rates
>>>> DATA

pH-after-0-yr 7.2 1.0 pump
pH-after-1-yr 5.8 0.5 pump
pH-after-2-yr 3.6 0.5 pump
<L
<L

40
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Running iTOUGH2-PEST

e IfiTOUGH2 is run on a PC without TOUGH2 being the
forward model, a dummy TOUGH?2 input file (named,
e.g., dummyT2) needs to be specified with the keyword
PEST in the first line

e The EOS module “pest” (or any other EOS module)
can be used:

itough2 polyi dummyT2 pest

¢ Under Unix/Linux, the dummy TOUGH?2 file and dummy
EOS name can be replaced by the command line
argument —pest:

itough2 -pest polyi

41

ITOUGH2-PEST Manual

* Finsterle, S., ITOUGHZ2 Universal
Optimization Using the PEST Protocol —
User's Guide, Report LBNL-3698E, Lawrence
Berkeley National Laboratory, Berkeley,
Calif., July 2010.

* http://esd.lbl.gov/research/projects/tough/
documentation/manuals.html

42
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Definition: Calibration Point

e A calibration point is a point in space and time at which the
observed system response z;* and the calculated system response z;
will be compared during model calibration.

— If calibration time does not coincide with measurement time, z;* will be
linearly interpolated between available measurements

1 data point, z *
v °© o ©
S calculated z
ﬁ o o ©O
e (o)
(o]
° o

Time 2




Definition: Residual

e The residual is the difference between the observed and
calculated system response at calibration point i.

v, =z *—z(p), i=L...,m

e The weighted residual is the residual multiplied by a
weight.

— An example for weight is the inverse of the assumed
measurement error (stochastic model).

*— .
y a2
.

1

Definition: Jacobian Matrix

e The Jacobian J is an m x n matrix holding the
sensitivity coefficients

e The local sensitivity coefficients are the
partial derivatives of the calculated system
response z; at all calibration points z, i =1, ...,
m, with respect to each of the parameters p,
j=1,..,n

J _ aZ(p)l
j=—

p;




Errors and Resi

dual

data point1 7

residual
measurement erro / o
o modeling error Qe true zZ
2 s s o U calculated z
o o
& OO o B o
o
o o
Time
* Measurementerror e, =z*-Z
e Modeling error e,=z-%
e Residual r=e;-e,=(z*-2)-(z-2)=z%-z ,
Systematic and
Random Components
: true measurement
data point = +
system state error
systematic random
N identified unidentified
conceptual distributional
functional stochastic
. . . calculated .
calibration point| = + residual
system state




Functional vs. Stochastic Models

e Functional Model

— Attempts to capture the systematic, identifiable aspects
® True system state
¢ Systematic error in the data

— Is represented by the governing equations of the forward model

e Stochastic Model
— Describes random, unidentifiable aspects

— Includes:
¢ Adistributional assumption about the final residuals
e Estimate of expected size of residuals (not measurement errors!)

— Is represented by the observation covariance matrix C,,
— Describes measurement error only if Functional Model is perfect

Stochastic Model Development

Before inversion (a priori):

e Estimate expected distribution of residuals (type of
distribution and standard deviation).

— Consider which portion of the observed signal shall
be explained by the functional model.

— Consider measurement errors and modeling errors.
— Consider only random components.
— Talk to experimentalist/data collector/data analyst!

* Set up observation covariance matrix C,, (or 0,2 V

ZZ)




Observation Covariance Matrix C,,

m x m diagonal matrix

o 0 0 0 0 o, : a priori error
1
0 0 6> 0 0
C_= " =02V .
1o 0o 0 o 0 oo In iTOUGH?2
2
R 0,=1.0
0 0 0 0 - o —
" sz - sz

. Summa_rizes the Stochast_'ic Model

e Scales data of different quality, type, and units of
measurement

e Weights fitting error
e Reflects your prior assumption about the average
size of the residual after calibration

Exercise: Determine C,,

Pressure [kPa]

Time [day]




iITOUGH2 Input

One alternative to specify a priori variance to all data in a
given data set:

> OBSERVATION

>> PRESSURE

>>> ELEMENT : All125
>>>> ANNOTATION : Pressure 1/2
>>>> COLUMNS 12
>>>> Read DATA from FILE : nonoise.dat (in MINUTES)
>>>> standard DEVIATION : 200.0 Pa (expected residuals)]
<KL
<L

<<

Prior Stochastic Model for
Parameters

e Parameter uncertainty distributions needed for
— parameter estimation with prior information
— uncertainty propagation analysis
— sensitivity analysis (scaling of composite SA measures)

> PARAMETER
>> ABSOLUTE permeability
>>> MATERIAL : SAND_ BOUND
>>>> ANNOTATION : log(abs. perm.)
/~ >>>> LOGARITHM N
>>>> Log-NORMAL distribution of UQ
>>>> PRIOR information : -12.0 (mean for UQ)
>>>> standard DEVIATION : 0.5 (weighs difference
between estimate and prior wvalue)
\_ >>>> BOUNDS : -13.5 -10.5 )
<L
<<
<< 12




Example: darcy?2i

AL et
ESTIMATED PARAMETER V/L/F ROCKS PAR INITIAL GUESS BEST ESTIMATE
log(abs. perm.) LOGI0 SAND +1 1  -0.12000E+02 -0.1169E+02
Porosity VALUE  SAND 1 0.25000E+00 0.373E+00
Initial gas sat VALUE DEFAU 2 0.10250E+02 0.10291E+02

NDARD DEVIATIONS SENSITIVITY

MARGINAL Cc/M OUTPUT OBJ. FUNC.
0.169E-01 0.505 333.5 0.302
0.170E-01 0.455 33.9 0.279
0.408E-02 0.820 85.2 0.905

>>>> DEVIATION in block > PARAMETER not specified in darcy?2i:
- difference between estimated parameter and its prior value is not weighted
-> “prior information” is not included

a posteriori

After inversion (a posteriori):

e Determine if the final residuals are consistent with
the (a priori determined) stochastic model

e Test randomness of residuals (look for systematic
structure/bias in residuals) = see Residual Analysis

e Perform Fisher Model Test (tests a priori error
variance 0,2 against a posteriori error variance s,2)




Residual [kPa]

Stochastic Model Development

Leakage in experimental apparatus leads to systematic

errors
15 .
. Experiment 1 Estimated error
5 PV ““~___ | variance 5,2=48.31
7 o Wi TN -
0 cxr‘sﬂ‘;ﬁ% AR 2 r'Cr
;_‘/-'9‘6"‘"(4 Fr \'\‘.,E L & = 2z
oF N\ m—n
s \Q\_“ - Systematic error
- ~ ‘v
. X
: - : e 2/ 2
caergen s O\ Fisher test: s,%/0,2 > 1.
20 3 Error in functional
B 10° 10¢ 1 model
Time[sed

o v bk W Nk

N

Stochastic Model: Questions

List types of errors?

Provide examples of systematic errors?
Provide examples of random errors?

How are random errors described?

What is the purpose of the Stochastic Model?

Why do we often base the Stochastic Model on
measurement errors?

What is the value of 0,%?

What is the distribution of a sum of many
random errors?




Alternative ways to specify o

All data points in data set receive same o

>>>> DEVIATION: 200 Pa o

>>>> VARIANCE : 4E4 Pa’2 o?

>>>> WEIGHT : 0.005 1/Pa 1/o0

>>>> AUTOMATIC o =10% of mean of all

measured data in data set

Each data point receives its own o

>>>> RELATIVE : 2 % o= 2% of measured value

>>>> COLUMNS : 1 2 3

>>>> DATA time value std. dev.
3600.0 10310.5 200.0

86400.0 55195.0 400.0




o for Parameters

Weight of prior information and scaling of sensitivity coefficients

>>>> DEVIATION: 1.0 log (m?) prior information
>>>> VARIATION: 1.0 log (m?) variation for SA

Parameter uncertainty distributions for Monte Carlo analyses
>>>> UNIFORM
>>>> NORMAL

Combine with parameter transformation commands

>>>> LOGARITHM, >>>> FACTOR, >>>> LOG (F)

as well as commands >>>> GUESS/PRIOR and >>>> RANGE
to fully define uncertainty distributions

Related Commands

Specify individual diagonal elements of covariance matrix

>> COVARIANCE
32 500.0 o =500 Pa for calibration point No. 32

Accounting for autocorrelated and heteroscedastic residuals

>>>> AUTOREGRESSION Set AR1 autocorrelation
coefficient p
>> AUTOREGRESSION Estimate AR1 autocorrelation

coefficient p

>>>> Box-Cox Set Box-Cox transformation
parameter A

>> Box-Cox Estimate Box-Cox transformation
parameter A

10
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function
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likelihood
theory




Objective Function

e Aggregate measure of misfit between measured data
and model prediction

e Scalar, S

¢ Function of unknown parameters p: S=5(p,z(p))

¢ To be minimized (minimizing S = improving fit)

e Can be based on maximum likelihood considerations

e Examples of objective functions:

— Least absolute value (L,)

— Least squares (L,)

— MinMax (L..)

— Robust estimators (Cauchy, Huber, Andrews)
Others (Nash-Sutcliffe, Kling-Gupta)

Objective Function:
Aggregate Measure of Misfit

Pressure data from well test 4

Predicted pressures depend on
parameter log(k)

Pressure

Objective function S is
aggregate measure of misfit

S is function of log(k)

log(k) that minimizes S yields

best fit e, :
“ “ quunn?®

p; is considered best estimate g L o

of log(k) 2 ., :.'

p; is parameter that most likely § R

“produced” the observed gl IS SN

pressure data. log(k) Ps bz !




Objective Function forn=1

“ 1
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0 - 3
Parameter [log(k)]
4
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Objective Function for 2 Parameters
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Objective Function

Objective Function for
n=2 and n=3

S

o
£

Brooks-Corey A
SO

o
»

Properties of Objective Function

e A nonlinear function in n-dimensional parameter space

Ill-posed

Non-convex, with many
local minima, saddle
points, long and narrow
valleys, etc.

Discontinuous and
numerically unstable.

Flat near the minimum.

Well-posed

Convex, but may exhibit
local minima and saddle
points.

Continuous and
differentiable.

Close to quadratic near
minimum.




Weighted Least Squares

¢ Defined as the sum of squared residuals, multiplied by an
appropriate weight

" (z ¥—z )2
minimize S = Ew
i=1 O
e Most common

¢ Increasing the weight increases the contribution of that
observation to the objective function.

e Least squares estimation (by definition) minimizes error variance

Maximum Likelihood: General

e Probability density function (pdf)
— Probability of observing z* if p is true.

—Joint pdf is the product of individual
observations’ pdf assuming the
observations are independent.

Pr(z=z*)

Z;

. — — E3 _ .
e Likelihood function ~ P(=P)=Pr(z=2z*|p)=[]®(z:p)
— Describes the likelihood of p given z*.

— Same concept: ®(z;p) & L(p;z*)
— What do we want to do if we want to find p that best fit z*?

e Maximize the likelihood of the solution

maximize L(p;z*)< minimize S =-2 ln[L(p;z*)]




Maximum Likelihood:
Normal Distribution = Least Squares

e Gaussian probability density function

1(z,*-2)

®(z;p)=(2no,) " exp ——M
1 1 2 O-l_

1
exp —E(z*—i)TC;(z*—Z)

-1/2

C zz

(z:p) =] [ @(z,:p) =27) ™

¢ Likelihood function

exp —%(z * —i)TC;Zl(z *—7)

-1/2

L(p;z*)=(2m) ™"

CZZ

* Maximum likelihood minimize S =(z*-z)'C_(z*-z)

Least square minimization !

1"

Weighted Least Squares

IF residuals are normally distributed

— A reasonable assumption based on central limit
theorem, assuming the observations are
independent.

IF weights are the inverse of the standard deviations

THEN minimizing the least-squares objective function
yields maximume-likelihood estimates.

e o (z,%-z,)
minimize S =Z%

i=1 i

=(z* —Z)TC;ZI(Z *—7)




Weighted Least Squares

e This interpretation is only valid if:
— Residual errors are random and independent
— Residual errors are normally distributed
— No systematic error

¢ Violations of the assumptions:
— Presence of few large outliers
¢ Small number of deviate points can distort fit
— Presence of many small outliers
e Error distribution is heavy tailed
— Systematic errors
e Asymmetric distribution
e Deterministic instead of random
¢ Correlated residuals

Non-Gaussian Residuals

Distribution of Objective Parameter
Residuals Function Estimates
Gaussian Least Squares
Maximum
Likelihood
Estimates




Robust Estimators

Reduced

impact of
large residual. ‘\\

loss function

Large residuals can be due to outliers in the data or systematic
modeling/data errors

GD9674175N9

“Banknote

DEUTSCHE BUNDESBANK

0967 4175N9

heteroscedastic
Calibrated Parameters: i Calibrated
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Schoups and Vrugt, WRR, 2010; Finsterle and Zhang, C&G, 2011




“Theoria Cominationis Observationum
Erroribus Minimis Obnoxiae”
Carl Friedrich Gauss (~1820)

The integral fx¢x.dx, i.e., the mean value of x, indicates the presence or absence of constant error, as well as
its magnitude. Similarly, the integral fxx¢x.dx taken from x=-c to x=+ « (the mean square of x) seems most
appropriate to generally define and quantify the uncertainty of the observations. Thus, given two systems of
observations which differ in their likelihoods, we will say that the one for which the integral fxx¢x.dx is smaller
is the more precise.

Now if someone should object that this convention has been chosen arbitrarily with no compelling necessity, |
will gladly agree. In fact, the problem has an intrinsic vagueness about it that can only be resolved by a more
or less arbitrary principle. It is not out of place to compare the estimation of quantity by means of an
observation subject to larger or smaller errors with a game of chance. Since any error to be feared in an
observation is connected with a loss, the game in one in which nobody wins and everybody looses. We
estimate the outcome of such a game from the probable loss: namely, from the sum of the product of the
individual losses with their respective probabilities.

It is by no means self-evident how much loss should be assigned to a given observation error. On the
contrary, the matter depends in some part on our own judgment. Clearly we cannot set the loss equal to the
error itself; for if positive errors were taken as losses, negative errors would have to represent gains. The size
of the loss is better represented by a function that is naturally positive. Since the number of such functions is
infinite, it would seem that we should choose the simplest function having this property. That function is
arguably the square, since the principle proposed above results from its adoption.

Laplace has also considered the problem in a similar manner, but he adopted the absolute value of the error
as his measure of loss. Now if | am not mistaken, this convention is no less arbitrary than mine. Should an
error of double size be considered as tolerable as a single error twice repeated or worse? Is it better to assign
only twice as much influence to a double error or more? The answers are not self-evident, and the

problem cannot be resolved by mathematical proofs, but only by an arbitrary decision. Moreover, it
cannot be denied that Laplace’ s convention violates continuity and hence resists analytic treatment, while the
results that my convention leads to are distinguished by their wonderful simplicity and generality.

“Theory of the Combination of Observations Least Subject to Errors”, translated from Latin by G.W. Stewart, 17
1AM, 1995; emphases added)

Objective Function: Questions

1. Purpose of objective function?

2. Properties of objective function?

3. Well-posed inverse problem?

4. lll-posed inverse problem?

5. Reasons for choosing least-squares?

6. Potential problems with least-squares?

7. Sketch contours of objective function (n=2) for
nonlinear model, well-posed inverse problem, noisy
data, correlated parameters




iTOUGH2 Commands
Objective Function

> COMPUTATION
>> OPTION

Objective function options:
>>> LEAST-SQUARES
>>> ANDREWS: 1.5
>>> CAUCHY
>>> L1-ESTIMATOR
>>> QUADRATIC-LINEAR: 2.
>>> NASH-SUTCLIFFE
>>> KLING-GUPTA
>>> SEP

0

20
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Example: darcy2i

>I 0 1 0.54881E+03 0.46643E+02
>I 1 5 0.25961E+03 0.32326E+02
>I 2 9 0.36443E+02 0.50984E+01
>I 3 13 0.14103E+01 0.10593E+00
>I 4 17 0.36144E-03 0.30614E-04
>I 5 21 0.30869E-07 0.27656E-08

1.00E+02 |

1.00E+00 w

1.00E-02 ) 2

1.00E-04

1.00E-06

1.00E-08

21
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2

iTOUGH2 Short Course

Lawrence Berkeley National Laboratory
EarthSciences Division
Berkeley, California

Definitions

Sensitivity Analysis:
“The study of how uncertainty in the output of a
model can be apportioned to different sources of

uncertainty in the model input”
(Saltelli et al., 2004)

Uncertainty Quantification / Analysis:

Focuses on quantifying uncertainty in model output
given uncertainties in model input

Observations are sensitive / insensitive

Parameters are influential / non-influential




Purpose of Sensitivity Analysis
e Sensitivity Analysis provides insight into:
— System behavior, features and processes:
¢ Helps uncover errors in law-driven models
¢ Helps build parsimonious data-driven models
¢ Helps identify key processes in diagnostic models
* Helps identify key factors affecting prognostic models
¢ Helps defend robustness of model
¢ Helps establish research priorities

— Relative importance of parameters -

e Which (uncertain) parameters have greatest effect on model
predictions and prediction uncertainties?

¢ Which properties need to be determined with high accuracy?
3

Purpose of Sensitivity Analysis

e Information content of data (“worth of data”)

=  Which data contain information about the
parameters to be estimated by inverse modeling?

=  Which parameters may be estimated using inverse
modeling?

e Sensitivity always refers to a specific objective.

e Sensitivity measures are to be consider qualitative or
(at best) semi-quantitative.




Types of Sensitivity Analyses

e Sensitivity of z with respect to p

— Observable variables w.r.t. parameters to be
estimated

— Objective function w.r.t. parameters to be estimated
— Performance measures w.r.t. design variables

— Model output w.r.t. uncertain input parameters
Consider potential variation of parameter p

Consider expected/acceptable variability of observable z

Make sensitivity coefficients dimensionless for
comparison

Types of Sensitivity Analyses

e [ocal Sensitivity Analysis
— Sensitivity at a given point in the parameter space

— Byproduct of derivative-based minimization
algorithms

— Analytical or numerical evaluation

e Global Sensitivity Analysis

— Composite sensitivity measure over feasible
parameter domain

— Global SA only needed if model is (highly) nonlinear
— Sampling-based evaluation




Local Sensitivity Analysis

Sensitivity Matrix

e The m x n Jacobian J matrix holds the
local sensitivity coefficients

e The local sensitivity coefficients are the
partial derivatives of the calculated J. = 9z(p),
system response z, i = 1, ..., m, with apf
respect the parameters py,Jj=1,.,n.

e The sensitivity coefficients can be scaled
by the expected variations of the ~ 0z(p), 9,
parameters and observations = "~ 9p, o,
dimensionless

Z.
i




Sensitivity Matrix

e Partial derivatives are evaluated numerically
e Default perturbation in iTOUGH2: 6p = 0.01p
e Local sensitivities depend on reference parameter set

9z | _ %Py P 40P ,) = 2,(P)

ij

6pj

apj

P

Reference value

N

[0}

2 : :

g RN

4 —

4 ‘ : N
Parameter p;

Composite Sensitivity Measures (1 of 2)

e Relative sensitivity of each

data point to each parameter: Fsetet] )2
v Gpl_ _ 821’ .O-p]_ (g j” :fu :fl,, @
v Yo dp, o 1.1 T
% J % € J!l Jy Jm az
T :
¢ Information content of N =
individual data points: !
_ T n i
a,=2, ‘]z‘f| 1. N
j:l i Jml Jm_] P Jmn am
e Overall parameter sensitivity:
> d | 4, d,

d;= §|Ji/'




Composite Sensitivity Measures (2 of 2)

Information content of individual
data set to estimation of a

Parameter ;

x

parameter: m
b, = D

i=1

J.

)

ick

Information content of individual
data set to all parameters:

i€

B bl, by, G
t

a by Dy Cr
s , i

€ : :

t P .

N A "

n m - m n
(=22, =Xal,=Xb,
i=1 j=1

j=1 =l
Parameter influence on objective

function:
61‘ :|AS| :|S(pi +Api)_S(pi)|

Measures do not account for correlations among data

and/or parameters

Example Local Sensitivity Analysis

pted. Resta
insert it again

The image cannot be displayed. Your computer may not have enough memory to open the
“ corrupte rt your computer, and then open the d I

the file again. If the red x still appears, yol

Finsterle, S., and P. Persoff, Water Resour. Res., 33 (8), 1803-1811, 1997.

image, or the image may have been
u may have to delete the image and th




Example:

kkkkkkhkhkhkkkhhhhkhkhhhkhkhkkk k%
SENSITIVITY ANALYSIS

Kkkkkkkkhhhhhhhhhhhhhhhkhkhhhkxd

[... descriptions of sensitivity analysis ...]

TIME # OBSERVATION log(abs. perm.)
5.00000E-01 4 Pressure 1/2 -1.65294E+00
1.00000E+00 6 Pressure 1/2 -4.89020E+00
1.50000E+00 8 Pressure 1/2 -5.47909E+00

[ ... repeated for different TIME and OBSERVATION ... ]

information content of

<— Look for SA in darcy2i.out

darcy2i

a,, information
content of individual data

N

Porosity Initial gas st TOTAL
1.84821E-01 -2.79597E+00 4.63373E+00
5.65301E-01 -4.08169E+00 9.53720E+00
6.35593E-01 -4.36425E+00 1.04789E+01

individual data set log(abs. perm.)

Porosity Initial gas sat TOTAL

Sum of sensitivT coefficients 6.67235E+02
Potential parameter iation 5.00000E-01

6.75808E+02 1.69667E+03

5.00000E-02 5.00000E-02
Total from data Pressure 1 239.1 27.8 64.9
Total from data Flow inlet 94.5 6.0 19.9
Total parameter sensitivity 333.6 33.8 84.8

d,, overall parameter sensitivity

. /.
¢;, overall information
content of data set 13




Morris One-At-a-Time (MOAT)

Comprised of multiple local

sensitivity analyses

Partition parameter space in

k points (k-1 intervals) ;

: k 5

Define Ap, = &
2(k-1)

Change parameters by Apj,
one at a time, and compute
finite difference sensitivity
coefficients

= elementary g = z(pys---P, P, AP LD s P,) — 2,(P)

Parameter p;

effects J Ap, -

MOAT

Evaluate S; for multiple paths (n,)
in the parameter space,

each starting at a randomly
selected point

Response, z;

Calculate mean elementary effect:
Calculate mean absolute elementary effect:

Calculate std. dev. of elementary effect:

Parameter p,
u; =[S, (p)]
uy =E[S,(p)]
o2 = VIS, (p)]

Number of simulations needed: N,,= (n+1) ® n,




MOAT visualized

600 : )
' z(p) for all parameter

500 combinations evaluated during
- Morris analysis

4001t ................. ................. ............ A” elementary effects’ SU
£ S ; computed for log(k)
At 300F ....... r e ............... ................. ......... ]
< P : Mean of all elementary
200 'R ............. ............... ......... eﬁeCtsl SU
T A Local sensitivity at mid-
100 - 1~ range log(k)
0 .
-1.5 -1 -0.5 0
logl0-Res. K 17
MOAT
e Morris OAT method identifies parameters that are:
— Important / negligible
— Linear / nonlinear
— Independent / correlated
e Possible scenarios:
(1) Linear model z(p) = S;(p) constant > O'é =0
(2) p, has negligible effect on z > y; =0
(3) Nonlinear model z(p) = S,(p) variable > gé >0
(4) Interactionsamongp’s = S(p) variable > 0'3 >0
e Therefore:

(2) If us >> 0, then parameter p; is important
(2) If # -+, then parameter p; is insignificant

be

(3) If 0'§ >0 then p; has nonlinear/interaction effect




MOAT

e Demonstration for linear/nonlinear model

z(p) = p{ +2p, +3p; +4p, +5p;

P P, Ds Py Ps

e Parameters p, - p; are linear:

The mean elementary effects correspond to the local
sensitivity values

Variances are zero

e Parameter p, has nonlinear effect:

ForO<p;<1, the mean elementary effectis < 1
Variance is non-zero

MOAT

 Demonstration for model with interaction

z(p)=p, Py +3p; +4p, +5ps

P P, Ps Py DPs
Hs | 046 | 043 | 3.0 | 40 | 50
o | o1 [ 010 | 00 | 00 | 00

« Parameters p, and p, show interaction:

The mean elementary effects are different from local
sensitivity coefficients

Variances are non-zero

Cannot distinguish between nonlinearity and interaction! "

10



MOAT

10 10
2(p)=D Bw,+) B, 00,.0=p~1,i=24680910,0=p /(p+0.1)-05i=1357

i=1 i<j

8 —
5
Stronger o Weaker nonlinear/
0 nonlinear/ interaction |effects
interaction 1 3 L -1
) effects © 7 x#—g”’ 4
O'Sfe -
© < negligible Strong linear effect; pg is
s T _~ more important than pg
o 219 [ 6 Bl
I T I I I T
0 5 10 15 20 25
.Usj
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Example: darcy®i

Khkkkkkkk

ourrur <— Look for OUTPUT in darcy6i.out

*okok ok ok ok kK

[ ... Outputs before the MOAT results give the samples and the corresponding objective function values

for the paths taken to compute MOAT results ... ]

MORRIS ONE-AT-A-TIME SENSITIVITY ANALYSIS

Number of active parameters : 3

Number of partitions : 6 Summary of parameters
Number of paths : 12 used in the MOAT

Total number of simulations : 4

Mean Elementary Effect for Each Observation

IOBS OBSERVATION TIME WEIGHT |

| MEAN EFFECT MEAN ABS(EE)

0.50 0.50000E-02
0.50 0.12000E+05

-0.14682E+01
-0.53067E+02

0.74054
0.53067

4 Pressure 1/2
5 Flow inlet

[ Repeated for all observations ... ]

log(abs. perm.)

STD. DEV.
E+01 0.86684E+01
E+02 0.39115E+02

[ Repeated for other
parameters ]

11



Example: darcy®i

Mean Elementary Effect for System State and Objective Function

e

SYSTEM STATE

STD. DEV.

PARAMETER ELEMENTARY EFFECT MEAN ABS. EE.
log(abs. perm.) -0.10326E+02 0.21035E+02
Porosity -0.20239E+01 0.24792E+01
Initial gas sat -0.14251E+02 0.14823E+02

0.26985E+02
0.42915E+01
0.15299E+02

R R T

[... continue ... ]

hkkkkkkkkkhkkkkkkkkhkkkhhhhkhkhkkkkkkkkkkhkkkkkkkkkkkkkkkkk Kk
OBJECTIVE FUNCTION

ELEMENTARY EFFECT MEAN ABS. EE. STD. DEV.
0.12865E+05 0.13648E+05 0.23769E+05
0.20162E+04 0.22682E+04 0.35059E+04
0.51308E+04 0.51308E+04 0.58485E+04

D

23

Variance-Based

Global Sensitivity Analysis

e Basic concept: Variance decomposition

— Which part of the output variance can be explained

by which parameter?

— How much can the output variance be reduced by

fixing a parameter?

— Requires Monte Carlo sampling = expensive!

24
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Scatter Plots and Conditional Variances
Perform Monte Carlo simulations, sampling input parameters (p,,p,,P3,P4)
Plot z(p4,p,.P3.P4) as a function of p;

Cut scatter plot i into thin vertical slices and take expected value, E(z|p;)
Take variance of E(z|p;), V(E(z|p;)), to identify influential parameter

| ‘Z(P1,p2‘p3‘p4) 2
| sy

et
1 oK R
BT
..‘ ."‘ W ‘-

—————

Z(p11pz,P3,P4). .‘(;L:' ;" -..‘ " ':.:n'

1, viabs
W%
Vo

Figure after Saltelli et al. (2008) ~*+ & &+ < =

P3 »
Scatter Plots and Conditional Variances
Perform Monte Carlo simulations
Plot Y(Z,,Z,,Z5,Z,) as a function of Z,
Cut scatter plot i into thin vertical slices and take expected value, E(Y|Z))
Take variance of E(Y|Z), V(E(Y|Z)), to identify influential parameter
| vezzzo i, -
AR RS 2 P
{ b i
4 "r :
- 22
V@22 7270 s VZ\Z3.Z3.Z4)
§ L s .,
Figure after Saltelli et al. (2008) % . 26
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Variance-Based
Global Sensitivity Analysis
e Evaluate conditional variances

— Fix one parameter, vary all the other V[EJ(Z,» |Pj)]
» first-order effect
» no interaction
» identifies influential parameters
» Sobol” index

— Vary one parameter, fix all the others VIE_ (z.|p_ )]
AN p_j
» total effect
» includes interaction effects
» identifies non-influential parameters
> total sensitivity index

*  Number of forward simulations required = N,,(2+n)

% contribution to uncertainty = sensitivity in UQ context »7

Sobol’ Index

* Sobol’ index

- Fix one parameter, vary all the
others

- Measures variability with
respect to individual parameter

04r

Sgas

- First-order effect 03
— Does not include interactions o/ i
- ldentifies influential parameters *'

_VIEIZ|R]]
N7V

[Sobol, 2001; Saltelli, 2003]

28
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Total Sensitivity Index

* Total sensitivity index

— Vary one parameter, fix all the others

— Total effect

- Includes interactions

- |ldentifies non-influential factors

_VLEZ|P]]

RS

VZ]

29

Compute Sobol’ Indices

Saltelli (2003), Glen and Issacs (2011)

A MC samples B MC samples
j=1 C(i=1,.n) =1
Generate k Py e Pi e P, : [Py Pi Pa
parameter ’\ Py - pi 4 P, /
sets j=k j:' K
Compute z(p) {a,, a,,..., a;} {Ci1) Ciarnr Ciid {by, b,..., b}

Sobol’ Index: §;
i 2 k ]2(0 mZ) (Ci,m

m=1

= Cor. ({a,,}, {¢;,})

— mz)

Total Sensitivity Index: S,;

S"'_l_o_ﬁz(b mz) (C/m )

= 1-Cor. ({b,,}, {c; ,,})

3

15



Example: darcy/i

*hkkkkhkk

oureur  <— Look for OUTPUT in darcy7i.out

kkkkkkkk

[ ... Outputs before the Saltelli Sensitivity Analysis results show samples and the corresponding
objective function values used to evaluate sensitivity indices ... ]

SALTELLI SENSITIVITY ANALYSIS

Number of active parameters : 3
Number of samples : 100 Summary of parameters

Total number of simulations 500 used in the Saltelli SA

Mean Elementary Effect for Each Observation

[ Repeated for all observations ... ]

Q
IOBS OBSERVATION  TIME WEIGHT | log(abs. perm.) | £~
| SENSITIVITY TOTAL SENS. | 5 g
4 Pressure 1/2 0.50 0.50000E-02 0.70345E+00 0.10271E+01 - ®
5 Flow inlet 0.50 0.12000E+05 0.49954E+00 0.11516E+01 %%
Q2
S?Q

31
.
Example: darcy7i
Mean Sensitivity for System State and Objective Function
R R SRS E S SR SRS RS RS E RS SRS R R R R SR SRR RS E R SRR R R R R SRR R RS EEREREEEEEEEEEES]
SYSTEM STATE | OBJECTIVE FUNCTION
PARAMETER SENSITIVITY TOTAL SENSITIVITY | SENSITIVITY TOTAL SENSITIVITY
log(abs. perm.) 0.53626E+00 0.94076E+00 | 0.28151E+00 0.10237E+01
Porosity 0.15732E+00 0.29462E+00 | -0.15934E-01 -0.72189E+00
Initial gas sat 0.22226E+00 0.37329E+00 | 0.25482E-01 -0.63849E+00
LR RS RS SRS E SRS E R SRS E RS EE RS RS EEEEREE SRS ER SRR EEEEEEREREREEEEEEEEEEEEEESEES]
32

16



Variance-based to Difference-based

Total sensitivity Index

Si=1- O-_ﬁz(bm AuZ) (cz m AuZ)

Sobol’ Index

k

1 1
= _émZ(am_ AuZ) (ci,m_ MZ)

m=1

Covariance-semivariogram Relationship

n‘ 2 Z(k l)z( an. lm

m=1

Sobol’ (2001)

- Perturb one parameter
- Take a difference

- ~ Morris Mean EE2
Difference: 0,72, fixed pertub.

Si GZ 2(k 1) E(aﬂl l Hl

- Perturb other parameters
- Take a difference

1 — total effects of others

= First-order effect
33

Recommendation

Local SA should be done first

* Number of partitions in the Morris method

- Small is acceptable (as long as the discrete points

capture the variability)

* Examine the scatter plots from the Morris sampling

- Nonlinear effects and interactions

* Sobol’ method requires a large number of simulations

- Confidence intervals

* Sobol’ index does not differentiate minor parameters

-> Total sensitivity index (or Morris mean [EE]).

¢ MC simulations from UA

-> Sobol’ index (approximation) as a by-product

34
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Summary Comments on Sensitivity
Analysis

e Perform Sensitivity Analysis as part of test design, i.e., before
data collection

e Large sensitivity coefficients are a necessary, but not
sufficient condition for inverse modeling

¢ Supplement Sensitivity Analysis with synthetic inversions for
improved test design

¢ Maximize model relevance, R:

R number of parameters that induce significant variations in output of interest

total number of model parameters

e Model parsimony may need to be assessed differently for

diagnostic, inverse, and prognostic models
35

Related Topics

e Experimental Design

e Factor Prioritization / Parameter Screening

e Model Simplification / Factor Fixing / Reduced-Order Modeling
e Monte Carlo Filtering / Factor Mapping

References

Morris, M.D. (1991), Factorial Sampling Plans for Preliminary
Computational Experiments, Technometrics, 33(2), 161-174.

Saltelli et al.(2008), Global Sensitivity Analysis, The Primer, Wiley &
Sons

36
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Sensitivity Analysis: Questions

Purpose of sensitivity analysis?
Composite sensitivity measures?

Differences between local and global sensitivity
analysis?

What do the mean and variance of the
elementary effect tell you?

Discuss strengths and weaknesses of local and
global sensitivity analysis methods

37
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iTOUGH2 Commands
Local Sensitivity Analysis

> COMPUTATION
>> OPTIONS
>>> SENSITIVITY ANALYSIS
<<

>> OUTPUT
>>> print JACOBIAN for each iteration
>>> print (unscaled) SENSITVITY matrix
<<<

<<

39

iTOUGH2 Commands
Numerical Evaluation of Derivatives

Number of forward differencing

> COMPUTATION bfafore switchingto centered
>> JACOBIAN differencing. 5
z(p;p.t+ )— Z.

>>> FORWARD :| 3 ;5P 0p)=Z(P)

Y op,

J
z,(p;p; +6p;)—z(p;p,—6p,)

>>> CENTERED J =
Y 26p,
More accurate but more expensive.

>>> HESSIAN H,=2(J,CJ, +B)

Compute full finite-difference Hessian.

Fraction of parameter value.
>>> PERTURB :M(\ (default: 0.01)

(if negative, use as absolute

perturbation)

40
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iTOUGH2 Commands
Morris Sensitivity Analysis

> COMPUTATION
>> OPTIONS
>>> SENSITIVITY ANALYSIS : MORRIS OAT
>>>> PATHS : |12 f&——— Number of paths, n,

>>>> PARTITIONS :@\
Number of

<<<<
<<< partitions, k

<<

41

iTOUGH2 Commands
Saltelli Sensitivity Analysis

> COMPUTATION
>> OPTIONS
>>> SALTELLI GLOBAL SENSITIVITY ANALYSIS
>>>> SAMPLES : (10000
<<<<

<< Number of Monte Carlo
<< samples, N,,.

42
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A
iTOUGH2 Short Course

Lawrence Berkeley National Laboratory
Earth Stiences Division
Berkeley; California

estimated
parameters

stopping
criteria

minimization
algorithm




Purpose of Minimization Algorithm
* Find the minimum of the objective function

e Automatically update parameter vector p such
the objective function S is reduced.

— Recall: The objective function S is a function of
the model output z, which is a function of the
parameter vector p.

— For least-squares:

minimize S =(z*-z(p))' C_'(z*-z(p))

Properties of Objective Function

IDEAL
Quadratic
Symmetric and convex
One global minimum

Continuous
Stable

<proximate ?

REAL
Non-linear
Complicated topology
Many local minima
Discontinuous
Unstable

Objective Function S

Objective Function S

Parameter

Parameter




Analogy:
Skiing in fog

Algorithm:
Direction — Steepest descent

Step length — Until it goes back up

Problem: Local Minima




Classification of Algorithms

et S tiethods

Classification

e Global vs. Local
— Find global minimum or nearest local minimum

e Direct Search Methods
— Evaluate objective function many times

e Gradient-Based Methods
— Move along gradient of objective function

e Second-Order Methods

— Evaluate Hessian (or approximation to Hessian)
of objective function




Direct Search Methods

Principle

— Evaluate the objective function for systematically or
randomly selected parameter combinations

Advantage
— No assumption about topology of objective function.
— Obtain complete picture of parameter sensitivity and well-
or ill-posedness of inverse problem

Disadvantage: Inefficient

Examples

— Trial & Error

— Grid Search

— Sampling-based global methods

Trial & Error

* Principle
— Update parameters based on expert’s insight into
system behavior and parameter sensitivities
e Advantage
— Incorporation of “soft” information
— Obtain feel for system behavior and sensitivities

e Disadvantage
— Subjective
— Tedious/inefficient (or impossible!)
— No formal error analysis




Grid Search

® Principle

— Evaluate objective function “everywhere” in the parameter
space

e Advantage

— Obtain complete information on: o
¢ Local minima

Parameter B

e Sensitivities

e Uncertainties

. Parameter A
e Nonuniqueness
e Disadvantage

— Very expensive: grows exponentially with n.
— Only practical for up to n=3 parameters

Simplex Algorithm

e Principle

— Obtain downhill direction from (n+1)-dimensional

simplex. Move on by reflection, expansion, and
contraction of simplex.

e Advantage
— No derivatives
— May jump over local minima

e Disadvantage

Parameter B

— Relatively inefficient
— No formal error analysis

Py

Parameter A




Gradient-Based Methods

Principle
— Perform step along gradient direction

Advantage
— Robust for sufficiently small step sizes

— There are efficient algorithms for calculating gradients
(adjoints)

Disadvantage
— Inefficient stepping close to minimum

Examples

— Steepest descent

— Quasi-Newton methods

— Conjugate gradient methods

Second-Order Methods

Principle

— Evaluate second derivative of objective function or
approximation thereof.

Advantage
— Quadratic convergence rate

Disadvantage
— Requires second derivatives
— Not always robust

Examples

— Newton

— Gauss-Newton

— Levenberg-Marquardt




Gauss{-New"ton |

and

- lLevenberg-Marquardt

‘Minimization Algorithms

Gauss-Newton Method

* Linearize model: z=1z,+JAp
* Substitute into objective ¢ _ (2% -z, - IAp)T CZ\ (2% -z, - JAp)
function: ’ = ‘
o " as
e Set derivative of objective —=0
function to O: op
14 Y1 _
¢ Obtain solution Ap: Ap = (JTCZZIJ) JTszlr

The algorithm is iterative: Starting with k=0...

@ Determine Ap,

@i S(p+Ap,) < S(Ap,), then set Ap,,,=p,+Ap, Go to step 1.
@ If S(p,+Ap,) > S(Ap,), then stop.




Parameter B

Gauss-Newton Method

Gauss-Newton
Approximation
of S

(
S v.,_Dpl
« “u
/ ’
7 Dp, +-Dpy
/
Po . Po
Parameter A Parameter A

Gauss-Newton Method

¢ Gauss-Newton identifies the minimum in a

single iteration if:
— Model is linear

— Quadratic objective function

e Quadratic convergence rate for weakly

nonlinear models

e Too large steps for strongly nonlinear models




Levenberg-Marquardt Method

¢ Modification of Gauss-Newton method for
strongly nonlinear models

e Mixes gradient and Gauss-Newton method:

— Performs robust steps along gradient far away
from the minimum

— Performs efficient Gauss-Newton steps near
the minimum

e Automatically adjust relative weight between
gradient and Gauss-Newton strategy

Levenberg-Marquardt Algorithm

Ap, =(07Cy, +A D] ) 3 C My,

A = Levenberg parameter

If step is successful, move toward Gauss-Newton strategy
(reduce A by n)

If step unsuccessful, move toward gradient strategy (increase

Abyn)
Ne= Marquardt parameter
D, = Tikhonov matrix
Identity matrix
Diagonal of normal matrix
Inverse of eigenvalues of normal matrix

20




Parameter B

Levenberg-Marquardt Method

Gauss-Newton
Approximation
of S

A 7 :
Pen /A
L AP

g
Po

Parameter A

If stepping is successful,
large Gauss-Newton
steps are taken.

Otherwise, small, robust
steps along steepest-
descent direction are
taken.

possible endpoints
of LM steps as a
function of n

21

100000

Levenberg-Marquardt Algorithm

90000 Normal

80000 Matrix

70000
60000

50000

[o]
I
o
o
S
S

20000 Y

i ""nﬂ Identity

Matrix

Objective Function

| Truncated Ao
| Eigenvalues |

10000 &

| EiEenvaIues

0 100 200 300
Forward Run

22
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Example: darcy3i

Iteration
Objective function Scaled step size
LE NBERG-MARQU*RDT ALGORITHM Param?ter set Parameter update

OUGH2 OBJ |FUNC. MAX. RESID. EQU. log(aBs. perm.) Poroslty Initial ¢as sat

0.62277E+02 5 -0.120000E+02 0.2500000E+00 0.1 2500E+02]

te of Jacobian matrix
J 1 Gradient = 0.76583E+04 (forward)

!

0.401228E-01

S Step size = 0.73094E-01 Scaled step size =
SVD Singular values of (JT*P*J) :

R 07 ( LR meter update: 0.709579E-01 -0.991490E-02 0.144712E-01
5(0.29236E+03 J0.47037E+02 5 [Z0.119290E+02 0.240085E+00 0.102645E+02 |
Inite-difference update of Jacobian matrix

J 2 Gradient = 0.57722E+04 (forward)
[ ... Intermediate Steps ...]

S Step size = 0.57239E-06 Scaled step size = l0.20804lE—05|
SVD Singular values of (JT*P*J) : 0.142812F+04 0.33857AE+04

ate of Jacobian matri¥

J 8 Gradient 0.31979E+01 (centered)

cs Step size 0.19640E-07 Scaled step size = |0.702879E-07
Step tolerance = 0.100000E-08 --> Terminate!

23

2 og ( = ameter update 0.177621E-06 0.520074E-06 -0.160002E-06
35(0.43026E+02 |0.52897E+01 28 [T0.116867E102 0.372566E+00 0.102015E402
e-difference upds

2 Algérit hms '
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lutionary Algorithms

halo gy:

volution

Algorithm:
Population
Generation

Reproduction
Crossover
Mutation
Fitness

Selection

Analogy

Chromosome - individual (a potential solution) made of
arrays of genes (values of decision variables)

Populations — a group of potential solutions
Generation —result of a GA iteration

Fitness — a relative measure of individual quality (objective
function)

Selection — a process to select individuals that are more
likely to reproduce

Crossover — mixing genes from two parents

Mutation — a random alteration of individual (explore new
search area)

26
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Crossover

Parent 1 Parent 2
Lilofouifefufofef [afufofofojrfufo]
Breaking point Breaking point
v l v
Lilofofofofufufof [ufufofefufrefo]r]
Offspring 1 Offspring 2
27
Mutation

1 0 0 1 1 1 0 1
Before |
Mutation position
1 0 0 0 1 1 0 1

After

28
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Analogy:

Searching for har/mony through improvisation

Algorithm:
Orchestra
Key
Improvisation

B ch adjustment

Harmony

15



Performance of Global Minimization
Algorithms
10 ! | T
1 k [ li I g " . —
‘M Mﬁliii.'i llilHarmony Search
WW Simulated Annealing
' Differential Evolution Algorithm
c 3 o
g™ Levenberg-Marquardt Algorithm
= | 111
S L
L |
[ |
=
H !
-]
310 |
-
!
|
b
1 L L L L L L L I . L . L
105 100 200 300 400
Forward Runs 31
— —
| =
03§ 03%
028 0.28
o1 %‘}93 01
A
o ° Iog(-lzfmzl) e " o Iog(_ljfmzl) e K
Harmony Search Simulated Annealing
I _—=
I S
04g 0.4g
DS% 0.33
L = 028 0.2(‘B
§.4 ‘%0.4
%’ 0253 25 12 115 -1 > %' 0253 125 12 -11.5 -1 >
log(k [m*)) log{k [m’])
Differential Evolution Algorithm Downhill Simplex 32
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3 e
Gauss Newton|

Ty
B

1225 -12
log(permeability [m®])

’ Iog(perme-ability [m?]) Iog(perm;ability [m?])

33

onnon Features of
lobal Algorithnms

e Deterministic step based on
objective function

C
G

e Random component to escape
local minima

e Heuristic control parameters

¢ Inefficient




U

W NP

Minimization Algorithm: Questions

Purpose of minimization algorithm?
List methods and their advantages and limitations
Key criteria for selecting the minimization method?

Sketch:

— Objective function for two parameters, nonlinear model
— Select starting point (initial guess of parameter vector)
— Draw Gauss-Newton approximation

— Perform two Gauss-Newton steps

Principle of Levenberg-Marquardt method?

35
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iITOUGH2 parameters and
observations

Check all second-level commandsin > PARAMETER block for
list of adjustable parameters that can be estimated.

Check all second-level commandsin > OBSERVATION block
for list of observations that can be used for model calibration.

Code unsupported, user-specified parameters and observations
into subroutines USERPAR and USEROBS (file it2user.f),
respectively.

Use PEST protocol to include parameters of pre-processors or
observations calculated by a post-processor.

37

> PARAMETER Commands
Affecting Minimization Algorithms

> PARAMETER
>> any
>>> any
>>>> initial GUESS: par0
>>>> RANGE: min max
>>>> PERTURB: (-)pert (for Jacobian)
>>>> maximum STEP size per iteration
>>>> VALUE/LOGARITHM/FACTOR/LOG (F)
>>>> DEVIATION: sigma
<<<

38
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Local Minimization Algorithms

> COMPUTATION
>> STOP

>>> max.
<L

>> JACOBIAN
>>> PERTURB:

>>> CENTERED

>>> TTERATIONS: 10
scaled STEP size: 10.0

>> alternative OPTIONS
>>> FORWARD run
>>> LEVENBERG-MARQUARDT
>>> GAUSS-NEWTON
>>> DOWNHILL SIMPLEX

0.03

39

Levenberg-Marquardt Algorithm

> COMPUTATION
>> STOP

>>> ITERATION
>>> LEVENBERG
>>> MARQUARDT
>>> STEP
>>> UPHILL
>>> STAY ALIVE
>>> NO ABORT
<L

I

Initial Levenberg parameter A.
Default is 1.0.

A larger value leads to a smaller,

10 safer initial step.

10.0 If A=0, the algorithm is

10.0 equivalent to Gauss Newton.
0

Maximum scaled step size.
Default is unbounded.

Maximum number of
unsuccessful uphill steps.

>> alternative OPTIONS
>>> LEVENBERG-MARQUARDT EIGENVALUE
>>> LEVENBERG-MARQUARDT IDENTITY
>>> LEVENBERG-MARQUARDT SVD TRUNCATE

20



Grid Search and Monte Carlo

> COMPUTATION
>> OPTION
>>> GRID SEARCH: 9 9 19

> COMPUTATION
>> STOP
>>> do: 1000 MC SIMULATIONS
>>> allow runs to ABORT as soon as OF>0Ofmin
>>> resample to STAY ALIVE!!!
<<<

>> ERROR
>>> use MONTE CARLO simulations and report run
with minimum objective function value
>>> LATIN HYPERCUBE SAMPLING

41

Global Minimization Algorithms:
Harmony Search and Simulated Annealing

> COMPUTATION
>> OPTIONS
>>> HARMONY search algorithm
>>>> MEMORY size: 20
>>>> CONSIDERATION: 0.8
>>>> PITCH adjustment: 0.3
<<<<

>>> SIMULATED ANNEALING
>>>> initial TEMPERATURE: -0.03
>>>> update after a maximum of : 20 STEPS
>>>> annealing SCHEDULE: 0.95
>>>> maximum number of ITERATIONS: 100
<<<<

42
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Global Minimization Algorithms:
Differential Evolutionary Algorithm

> COMPUTATION

>> OPTION

>>> DIFFERENTIAL EVOLUTION ALGORITHM
>>>> number of POPULATIONSs : 20
>>>> MUTATION scaling factor : 0.8
>>>> CROSSOVER scaling factor : 0.8
>>>> MUTOPTION I
>>>> RANDOM COMBINED FACTOR
>>>> STRATEGY HI)
<L

43

Minimization Algorithms:
>> OUTPUT Commands

> COMPUTATION
>> OUTPUT

>>>
>>>
>>>
>>>
>>>
>>>

print OBJECTIVE FUNCTION for each run
print RESIDUALS for each run

print JACOBIAN after each iteration
create NEW OUTPUT file for each run

PLOTTING curves after each: iteration

44
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iTOUGH2 Short Course

Lawrence Berkeley National'Laboratory
Earth Sciences Division
Berkeley, California

best
estimates

maximum
likelihood

theory

residual and
error
analysis




Why Residual and
Uncertainty Analysis?

e Parameter estimates may be worthless if:

— Model with optimized parameter does not match the
data, i.e., it is an unlikely representation of the true
system
goodness-of-fit, Fisher Model Test

— Estimates are biased by systematic errors or outliers
in the data
residual analysis

— Estimation uncertainty is large
C, correlation coefficients

— Solution is non-unique or unstable

e Types of Residuals
* Residual Analysis

) Overall Measures of Mlsﬁt
: { d'_.Error Varlance

 — Fisher odelTest
=~ Nash-Sutcliffe Efﬁaency
~ — Kling-Gupta Efficiency




Type of Residuals: Systematic

Systematic error in data:
— Data conversion error: factor, shift, drift
— Experimental error: leak, forcing term

Systematic error in model:

— Inadequate process description
— Inadequate parameterization
— Inadequate model structure

Contain information about parameters of interest
— A function of parameters.

Inconsistency between real system and its model
representation

If systematic residuals persist after inversion, adjust
experiment or model!

Type of Residuals: Random

e Errors in stochastic model
— Distributional assumption
— Heteroscedasticity: non-uniform variance
— Correlations

e Reducing errors in stochastic model (4 -1)
HzA)={ A-g*!
g-In(z) ifA=0

ifA#0

— Analyze residuals

— Use appropriate transformations
. _n? =
— Include correlations f,-={ n(a-p*) ifi=1

=Pt ifi=2,...m

— Use robust estimators

R l1—cos(7/c) if|f|<erm
r=
2 if |7 [>cm




Steps of Residual Analysis

@Plot the residual
- look for randomness

@Standard statistics (mean, median, skewness, kurtosis)
- look for symmetry

@Regression analysis on measure vs. calculated
- look for zero intercept, unit slope, and unit Pearson’s
R (coefficient of determination)

@Fisher, Nash-Sutcliffe and Kling-Gupta efficiency criteria
- closeto1

@Runs statistics
- Statistically tests number of positive and negative
runs in residuals

Remedies

e Residuals should be random
¢ Trends and patterns in residuals indicate systematic errors

e Try to remove systematic errors by:
— Refining the functional model
— Correcting systematic data errors
— Parameterizing and estimating conceptual model elements
— Parameterizing and estimating measurement errors

3000 = - T 15 T T g
| e | B i AN
2500 i , Py AT i\u\ j
- = AR = ! r
bt RN e
510 ¢ \ “t \i e " LA
g 10 ; s FIeY = X H T L]
< 1000 )\ \*‘ < "\
" . /)
EEEEE - £\ / AL
0 e ST A e e @ ) \ H € i qert 3
o et | / o 111 R
% = 5 - ; g . )
/ Time[sed T\r%ed /Time[sec]
Perfect match between data Systematic errors Random residuals after gas

and model from gas leakage leakage is explicitly modeled
8




Covariance Matrices

A priori error variance (assumed 1.0): g,

. . . . . 2
A priori covariance matrix of observations: C_=0;"V_

A posteriori error variance: 2= z
Covariance matrix of estimated parameters:
2 (T -17)
C,=s (4"
p zz
Covariance matrix of calculated observation: C.=J'C_J
Covariance matrix of residuals: C =C_-C,

. . . . 2 2 2
ith diagonal element of covariance matrix: ST

Residual Analysis Output in iTOUGH2

The following are tabulated in the output file (*.out).
— RESIDUAL: £,=z, —Z
— C.0.F.: Relative contribution [%] to objective function

— STD. DEV.: A posteriori standard deviation of ¢ = y7’c J
2z p

calculated system response

— Yi: Local reliability or influence = y, = 1—(0% /o, )2
Observations with y, < 0.25 are poorly controlled

— Wi: Studentized residual & w,=r,/0,
Potential outlier if abs(w)) > u(0.95) = 1.96

— I0D: Relative impact [%] of omitting observation
based on D-optimality criterion (“data-worth analysis”)




Evaluate the worth of data points
- without having data!

observation

probability density

time

v

rel. data worth =

det(C ) —det(c

PP)

det(C

PP)

parameter

c, =s(rcy)’

-1
2 (o -1
¢, =5 (i'eli)

Example: darcy3i

kkkkkkkkkhhkhkhhkhkhkdk

RESIDUAL ANALYSIS
Khkkkhhkkhh kR kkhkkhhk

[ ... Description for the columns of the table ... ]

1 log(abs. perm.) -

2 Porosity

3 1Initial gas sat
4 Pressure 1/2 0.50000E+00
6 Pressure 1/2 0.10000E+01
8 Pressure 1/2 0.15000E+01

[ ... Repeated for all observations ... ]

MEASURED COMPUTED RESIDUAL
0.12000E+02 -0.11687E+02 -0.31333E+00
0.25000E+00 0.37257E+00 —0.12257E+00} prior info
0.10250E+02 0.10291E+02 -0.41477E-01
0.10370E+06 0.10367E+06 0.35837E+02
0.10317E+06 0.10327E+06 -0.10851E+03 [cont...]
0.10257E+06 0.10291E+06 -0.33246E+03




Example: darcy3i

Pressure 1/2
Flow inlet

-600

-2.E-04

Appear random, with no clear trend in the data

Summary Statistics

e MEAN: mean of the residual (should be close to zero)

e STD. DEV.:standard deviation (should be consistent with
stochastic model, i.e., a priori defined standard deviations)

M/ S: Ratio of mean and standard deviation; indicates whether
mean (bias) is significant (should be small)

e SKEWNESS: Degree of asymmetry of residuals (should be 0)
e KURTOSIS: Relative peakedness of distribution (should be 0)

3 4

Lo _
KURT=Z;

rl.—?
SDEV

v, —=r
i

SDEV

L
SKEW:Z;

Note: statistical measures may not be robust for small data sets




Summary Statistics

MEDIAN: median of the residuals (should be close to 0)

odd m

’Em+l)/2

~>
I

0.57  +r even m
m/2 m

/2+1

AVE. DEV.:Mean absolute deviation (should be close to 0)

ADEV =%§1‘r -7

Large differences between median and mean and between
standard deviation and average deviation indicate robustness issue

Example: darcy3i

Summary of Residual Analysis

Max weighted residual at observation : 28
Max weighted residual : -0.2300E+01
Max residual : -0.4600E+03
Number of poorly controlled observations: 0
Number of large normalized residuals : 3
Max normalized residual at observation : 28
Max normalized residual : 2.40
Probable size of maximum error : 0.5021E+03

[ ... Some iteration statistics ... ]

Control Measures

Trace (P*QLL) : n = 3 H 0.3000E+01
Sum  (Yi) : m-n = 37 : 0.3700E+02
Objective Function C.O.F.
Initial value of objective function : 0.5208E+03 1210.52 %
Minimum value of objective function : 0.4303E+02 100.00 &




Example:

[ ... Summary statistics for each dataset ... ]

darcy3i

DATASET DATAPOINTS MEAN MEDIAN STD. DEV.
Pressure 1/2 [Pa] 20 -0.137E+02  -0.287E+02 0.210E+03
Flow inlet [kg/sec] 20 -0.708E-06 0.628E-05 0.898E-04
ALL RESIDUALS WEIGHTED 43 -0.359E-01  -0.000E+00 O}I&E+Ol

[ ... Summary statistics for each datatype ... ]

Consistent with measurement
noise added to data in
nonoise.dat to create noise.dat

DATATYPE DATAPOINTS MEAN MEDIAN STD. DEV.
PRESSURE [Pa] 20 -0.137E+02 -0.287E+02 0.210E+03
FLOW RATE [kg/sec] 20 -0.708E-06 0.628E-05 0.898E-04

Linear Regression Analysis

« INTERCEPT (should be 0)
e SLOPE (should be 1)

» R: coefficient of determination
(should be 1)

* NSE: Nash-Sutcliffe Efficiency
(should be 1)

* KGE: Kling-Gupta Efficiency
(should be 1)

* GAMMAi: Contribution of
correlation error, variability
error and bias error to the total
error

calculated

105,000

y = 5186 + 0.95x

104,500
R?=0.946

104,000
103,500
103,000
102,500
102,000
101,500

101,000
measured

102,000 103,000 104,000 105,000 106,000




Nash-Sutcliffe Efficiency (NSE)

A normalized model - 2
f Z(Zi _Zi) T
performance = (r'r)/m
o . NSE =1—-—-E =1-
criterion, with moo 5 ol
observed mean as Z(Zi — M) o
baseline =

Popular criterion in hydrology

NSE < 1; ideal value: NSE=1
- NSE can be used as objective function to be maximized

If NSE <0, the model is not a better predictor than using the
observed mean

Decomposition: NSE=A-B-C

A=FR° : Correlation between z(p) and z*
B=[R-(0,, /0, : Variability
C=[(u,, _'uobs)/cobs)]z : Bias 19

Nash-Sutcliffe Efficiency (NSE)

Decomposition helps examine the different components of the
residuals

Murphy (1988) : NSE=A4A-B-C
A=R? : Correlation between z(p) and z*
B=[R-(0,,/0,) :Conditional bias
C=[(u,,—u,) o,)] : Unconditional bias

Gupta (2009) : NSE =2aR -’ - B
R : Correlation between z(p) and z*
o=, /0,) : Relative variability
B=(u,, /u,) : Relative bias

20

10



Kling-Gupta Efficiency (KGE)

Reweights different
components derived KGE=1- \/(R —1)’ +(o=1)°+(B-1)
from the

decomposed NSE

e Measures Euclidian distance
from ideal point:

R=1, a=1, B=1

e KGE<1
ideal value: KGE=1
- KGE can be used as a
multi-objective calibration
criterion to be maximized

21

Kling-Gupta Efficiency (KGE)

* Relative contribution of the 3 components:

. G, =(R-1)
=——"—— where =(a—1)
"G +G,+G, 6, =@ l
G3:(ﬁ_1)

* For more information:
Gupta et al., Journal of Hydrology, 377, 80 - 91, 2009

22
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Example: darcy3i

Linear Regression Analysis of Calculated Versus Observed Data ...

DATASET DATAPOINTS INTERCEPT SLOPE
Pressure 1/2 [Pa] 20 0.506E+04 0.951E+00
Flow inlet [kg/sec] 20 -0.884E-05 0.985E+00
ALL WEIGHTED 40 0.366E+00 0.100E+01

R NSE KGE GAMMA1 GAMMA?2 GAMMA3
0.973 0.943 0.964 0.590 0.410 0.000
0.869 0.755 0.824 0.554 0.446 0.000
1.000 1.000 1.000 0.000 0.512 0.488

23

Estimated Error Variance s,

e The estimated error variance

— a posteriori error variance

— an aggregate measure of goodness-of-fit

— represents the mean weighted residual

r : residual

3 rTC;ZIr C,, :observation covariance matrix
= m
n

Sy = : humber of observations
m—n
: number of parameters
e If a priori assumptions about the residuals (expressed through
matrix C,,) were reasonable, then s(f /0'3 is close to 1:
Fisher Model Test

e Recall: Solving a weighted least-squares problem minimizes the
estimated error variance

24
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Fisher Model Test

. 2 2. .
e Theratio s, /O'O is a random variable
. C -«
following an F-distribution 0.8
* L'y _n,o,1—a is the inverse of the 0.6
cumulative F-distribution for 1-a 04
2 2 0.2
SO 60 > Fm—n,w,l—a
Error in functional or stochastic model % o5

2/ 2
lsso/ao <

m—n,o,l-a

Model test passed!

sg/agsl

Error in stochastic model or “overfitting”

* Only meaningful if a reliable stochastic model is available

1 \ 1.5

m-n,»,l-a

2

25
L]
Example: darcy3i vs. darcy4i

Fisher Model Test
Root mean square error : 0.1078E+01
Estimated error variance : 0.1163E+01
Variance used for error analysis : 0.1187E+01 (a posteriori variance) —
Nash-Sutcliffe efficiency criterion : 1.0000 ©
Degree of freedom 37 (no prior information) -q
Confidence level (l-alpha) 95.0 [%] >
Lucky you : Model test successful! 2,

--> Estimated error variance is used! (@)
Fisher model test criterion 1.41 (F-distribution) <
Factor for confidence bands 2.03 (t-distribution)
Factor for confidence regions 2.91 (chi-square distribution)
Root mean square error : 0.3183E+01
Estimated error variance : 0.1013E+02
Variance used for error analysis : 0.1013E+02 (a posteriori variance) 'E;
Nash-Sutcliffe efficiency criterion : 0.9999 ho)
Degree of freedom 37 (no prior information) o
Confidence level (l-alpha) : 95.0 [%] (D]
Warning : Model test failed! )

--> Estimated error variance is used! o)
Fisher model test criterion 1.41 (F-distribution) c
Factor for confidence bands 2.03 (t-distribution)
Factor for confidence regions 2.91 (chi-square distribution)

26
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Model Identification Criteria

e Criteria to allow comparison of different inversions
— Different data sets, parameters, or conceptual models

* Goodness of fit (s,)

— Not appropriate since adding more parameters always
improves the fit (risk of overparameterization)

e Optimality criteria: A: trace(C E: max eig(C D: det(C

pp) pp) pp)
e Akaike Information Criterion
AIC=(m—n)s; +In|C_ |[+mIn(27)+2n
e Akaike’s Bayesian Information Criterion
AIC=(m—n)s; +In|C_ |[+mIn(27)+1n|J'CJ |
e Kashyap Criterion

d;=(m—n)s; +In|C_ |[+mIn(27w)+nln(m/27)+1In|J'C_J |

27

Example: darcy3/4i /CZ=%

¥
Optimality Criteria [noisy.dat] unscaled scaled
D-optimality = det(Cpp) 0.2622E-12 0.1306E-15
A-optimality = trace(Cpp) 0.5905E-03 0.2072E-02
E-optimality = max eigenvalue : 0.5323E-03 0.2129E+00
Log-likelihood 1ln(L) s 0.2362E+02 . _
Akaike =-21n(L)+2n : -0.4123E+02 negative log
ABIC =-21n(L)+1ln|F| : -0.2168E+02 likelihood to be
Kashyap =-21n(L)+1ln|F|+n*ln(m/2Pi) : -0.1591E+02 minimized
Optimality Criteria [noisier.dat] unscaled scaled
D-optimality = det(Cpp) 0.1493E-09 0.1139E-12
A-optimality = trace(Cpp) 0.4288E-02 0.1812E-01
E-optimality = max eigenvalue : 0.3789E-02 0.1601E+00
Log-likelihood 1ln(L) : -0.1423E+03
Akaike =-2ln(L)+2n : 0.2906E+03
ABIC =-21n(L)+1ln|F| 0.3081E+03
Kashyap =-21n(L)+1ln|F|+n*1ln(m/2Pi) 0.3139E+03

All criteria have lower values for noisy.dat because of higher
data quality, making it the preferred model

28

14



Questions Residual Analysis

1. The a posteriori error variance sy turns out to
be significantly greater than the a priori error
variance o2

— What does “significantly” mean?
— What does that result indicate?

2. What are you looking for when evaluating
residuals?

29
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iTOUGH2 Short Course

Lawreénce Berkeley National Laboratory
Earth Sciences Division.
Berkeley, California

Parameter uncertainty analysis in

* Covariance/correlation matrix
* Correlation chart

* Direct (pairwise) parameter correlations
* Conditional estimation uncertainties

* Overall parameter correlation measure
* Improvement over prior uncertainties
* Eigenanalysis of covariance matrix

¢ Correction for nonlinearities ’




Statistical universe of data

hypothetical
data set z;

true
parameter set

observed
data set z*

least

fitted
parameter set p,

hypothetical
data set z;

squares

fitted
parameter set p

hypothetical
data set z,

fitted
parameter set p,

fitted
parameter set p,

Simulating statistical universe

observed
data set z*

least
squares

simulated
data set z,

least

of data

fitted

best fit
parameter set

simulated
data set z,

squares

“|parameter set p,

fitted

simulated
data set z,

parameter set p,

fitted

simulated
data set z,

parameter set p,

fitted

parameter set p,




Pressure [kP4]

Flow Rate [ml/mir]

Simulating estimation uncertainty

200 realizations of hypothetical :> 200 best estimates of porosity and
pressure and flow rate data initial gas saturation

106 033
1os w /(ll/ 032
c
104 .\ . -% 03 |
103 -
\ % 0.30
102 \ﬂ/ ;
! = oaof
101 0 E
= o2sf
= N 0'2331 0‘32 Ovl3 0.‘3'1 0.35 0‘36 0v|37 0‘38 0.39
- N i : / Porosity
- \.\Irij__-_
] - e . .
E C,, gives reasonable estimate of
° ) uncertainty region
Time [mirn]

Confidence Region

e The contours of the objective function visualize:
— Confidence region
— Correlation structure
— Appropriateness of linearity assumption
— Appropriateness of normality assumption

— Well-posedness of inverse problem




a 2
Sl—a = Smin + SO n F;l,m—n,l—a o

Confidence Region

e The probability that the true parameter set lies within the
ellipsoidal confidence region represented by C,, is (1-a).

e The true confidence region is bounded by the contour line of
the objective function at level:

S +s-n-F
min 0

m—n,e,l—a

e The confidence region increases with decreasing a.

* C,,is only a good representation of actual confidence region if
linearity and normality assumptions are not violated.




Covariance Matrix of Estimated
Parameters Cpp

e The covariance matrix C,, is an estimate of the
uncertainty of the estimated parameters:

c,, =sthrcaf’

+ C,, is an approximation of the actual parameter
uncertainty; it is based on a normality and linearity
assumption

« C,, is proportional to goodness-of-fit (502)
« C,, is inversely proportional to sensitivity matrix (J)

+ C,, is proportional to measurement uncertainty (C,,)

Estimation Uncertainty

e Decreases with improvement of fit
— Use good data and good model

e Decreases with increasing sensitivity
— Use sensitive data

e Decreases with decreasing correlations

— Use data that allow for independent determination of
each parameter

— Avoid overparameterization

e Design tests accordingly!




Covariance Matrix
Correlation Matrix

The diagonal of C,, contains variances o of estimated
parameters.

Off-diagonal elements are covariances c; between pairs of
parameters.

Off-diagonal elements are “normalized” to yield correlation
coefficients r;;:

Correlation Coefficients

A correlation coefficient of zero indicates that the two
parameters can be estimated independently.

A correlation coefficient of —1 or 1 indicates
non-uniqueness.

A negative correlation coefficient indicates that a
statistically similar match can be obtained by increasing
one parameter and decreasing the other.

If correlations exist, the uncertainty in one parameter
affects the uncertainty in the other parameters.

Design experiment as to minimize correlations.




Example: darcy3i

kkkkkkhkkhkhhkhhkhhkk

ERROR ANALYSIS

khkkkkhkhhkhhkhhkhhkk

Error analysis is based on >>> a posteriori <<< variance: 1.1628577E+00

Correlation

Covariance (L+D)/Correlation(U) Matrix of Estimated Parameters

_________________ coefficient, ry

log(abs. perm.) Porosity 1Initial gas sat
log(abs. perm.) | = 0.843 -0.259
Porosity 2.35163E-04 2.80104E-04 -0.490
Initial gas sat -1.74370E-05 -3.32081E-05 .63676E-05
(o2
P
Matrix of Direct Correlations .
_____________________________ covariance, cij
log(abs. perm.) Porosity 1Initial gas sat
log(abs. perm.) 1.000 0.851 0.331
Porosity 0.851 1.000 -0.525
Initial gas sat 0.331 -0.525 1.000

Indicates degree to which a change in one parameter can be compensated by another

13

Overall Correlation

¢ The conditional standard deviation ¢” is the estimation
uncertainty assuming that all other parameters are
perfectly known.

* C,, holds the marginal standard deviations o.

e The ratio 0*/ois a measure
of overall correlation.

e The ratio o’/o should be [
close to 1.




Example: darcy3i

Arrange in order of
decreasing

Standard Deviations

[ ... description of the«€olumn ... ]

independence (C/M)

Square root of the
diagonal of C,

PARAMETER BEST ESTIMATE A PRIORI CONDITIONAL MARGINAL c/M 1-M/P
Initial gas sat 1.02915E+01 N/A 3.32706E-03 4.04569E-03 0.822 1.000
log(abs. perm.) -1.16866E+01 N/A 8.44619E-03 1.66596E-02 0.507 1.000
Porosity 3.72609E-01 7.65512E-03 1.67363E-02 0.457 1.000

}/A
Specified only if used to
weight parameters in
objective function

0.0 0.0

Correlation Chart

Measure of how much is learned
from inversion compared to a

priori uncertainty
0.2 0.4 0.6 0.8

PARAMETER |
Initial gas sat

log(abs. perm.) |

Porosity

\ Correlation between gas saturation

and porosity

15
Reducing Correlations: Example
5 log(k) | log(b)
% L Bektfit
—~7 el log(k) | 1.67 | -0.99 | -0.87
= i %"4
= ¥ N %
B e st = el ’ log(b) | -0.99 | 2.16 | 0.87
& ) //,,/ i MM""
100
-0.87 | 0.87 | 0.003
o
Time[sed
>
g m € 3000 — eI log(b)
w 5 © R P o
E g 'E 2500 Experirem
g g -0.52 | -0.12
o >
5= £ S
$g < il 4e-4 | -0.02
- £ o iy
T o 9 : Tt
< 3 ] -0.02 | 0.01
16

Time[sed




Example: darcy3i

Eigenanalysis of Covariance Matrix (R-Mode Factor Analysis)

Performance index
Condition number

Eigenvalues

1 Eigenvalue

Eigenvectors

1 log(abs. perm.)
2 Porosity
3 Initial gas sat

3.25365122E-02
5.07978268E+01

1
4.7286641E-05

1
6.9034965E-01
-6.5282457E-01
3.1182918E-01

-~

2l

2
5.1655936E-04

2
7.0218708E-01
7.0839235E-01

-7.1509271E-02

3
1.0168926E-05

3
-1.7421439E-01
2.6832882E-01
9.4744340E-01

Under- and overparameterization:
Occam’s Razor

Calibration Error

4 mv)
-
(1%
o
5
& .
N
< (@)
N S
C
>
(@)
o
=
—~
........... f— Q__).
overfitting ,:_5,.
v v <

Degree of Model Complexity

Aluiepsaoun uonewnsy




Overparameterization

A match can always be improved by adding more
parameters to p.

Adding new parameters increases correlations and thus
increases estimation uncertainty.

Check o for large variances, correlation coefficients close
to—1or 1, and large condition numbers.

Add parameters only if the fit can be significantly
improved without introducing strong parameter
correlations.

Avoid over- and under-parameterization

Uncertainty Analysis: Questions

Discuss
-1

c,, =ssl'c)

pp

Under which conditions is C,, a good approximation
of the actual confidence region?

How can you reduce estimation uncertainty?

20

10



Uncertainty Analysis: Questions

4. Discuss “underparameterization” and
“overparameterization”.

5. C,,=0,2V,,isthe a priori observation covariance
matrix.

If all elements of C,, were multiplied by a factor of 4,
how would this affect:

— The value of the objective function S?

— The estimated parameter set p?

— The estimated error variance s,2?

— The uncertainty of the estimated parameters C,,?

— The outcome of the Fisher Model Test?
21
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iTOUGH2 Commands

>>>

> COMPUTATION
>> ERROR
>>> ALPHA: alpha significance level
>>> A PRIORI use oy’
>>> A POSTERIORI use s,2
>>> let FISHER model test decide

check LINEARITY assumption

23

*Jneepta
~— Linear

inty Propagation Analysis

inear Uncertain y:?‘l_"p'pja;ghatiron' e
i

12



Uncertainty Propagation Analysis

e Calculate prediction uncertainty as a result of
parameter uncertainty.

e Linear analysis (First-Order Second-Moment)
— Fast (n+1 forward runs)
— Easy to report (mean and covariance matrix)
— Based on linearity and normality assumption

e Monte Carlo simulations
— Expensive (many forward runs)
— Difficult to report

Full distribution

No distributional assumptions

25

Linear Error Propagation Analysis
(First-Order-Second-Moment)

e Assumptions

— Change in model prediction Az can be approximated by a
linear function of the parameter changes Ap

— Apis (log-)normally distributed
C.=JC J'
22 r
e Error band is symmetric, representing (log-) normally

distributed prediction errors

e May assign certain probability to unphysical system
behavior

26
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Monte Carlo Simulations

e Run many simulations with randomly selected
parameter combinations drawn from the given
probability density function.

e Provides full distribution of prediction uncertainty
(histogram), which can be analyzed statistically.

e Nonlinearities are automatically taken into account.
e Results are always physically reasonable.
e Experimental designs: Latin Hypercube Sampling.

e Parameter correlations may be included.

27

Monte Carlo Simulations

1F 95% Confidence Limits

Cumulative Seepage [kg]

[E Monte Carlo
JLE- realizations Histogram ot
e Final Seepage Mass

ot ol b
0 4 8 12 16 20 24 0 10 20 30 40 50
Time [h] Realizations

28




Comparison FOSM-MC

107000 !

!
5% FQSM eror bapd ] /"f
: L]
i

récovery
1

whter injection
L L

0 100 200 300 400 500 €00

Time [sec]
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Uncertainty Analysis: Questions

Describe the main differences between FOSM and
Monte Carlo simulations.

Assume you have to estimate the (hopefully small)

probability that the TCE concentration at a drinking

water well does not exceed a certain level.

— Which uncertainty propagation analysis method would you
choose?

— Justify your choice.

— Describe the procedure.

30
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Uncertainty Propagation

Specify uncertainties in input parameters in block
> PARAMETERS or provide covariance matrix of estimated
parameters using one of several formats

> COMPUTATION
>> ERROR
>>> FOSM

> COMPUTATION

>> STOP
>>> number of MC SIMULATIONS: 1000
<<<L

>> ERROR
>>> MONTE CARLO SEED: 9999 GENERATE
>>> LATIN HYPERCUBE SAMPLING
>>> EMPIRICAL ORTHOGONAL FEFUNCTION

32
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BERKELEY LAB
Short Course 2o s

Solving Simulation-Optimization Problems
Using iTOUGH?2

Installation Instructions

The iTOUGH2 Flash Drive contains the following directories with files needed for the
iTOUGH2 short course:

e Executables: iTOUGH2 executables for PC and Mac and related script files
* Exercises: Input files for computer exercises

* Lectures: Handout material in PDF format

* Manuals: TOUGH2 and iTOUGH2 manuals in PDF format

Installation on Mac

¢ Copy the contents of the iTOUGH2 flash drive to your hard drive’s home
directory (&), maintaining the directory structure.

* Add directory that contains itough2 shell script file to command search path:
o Open a Terminal (E])
o Edit file .bashrc and add the following line:
PATH=$PATH: SHOME/iTOUGH2 /Executables

o Save file and quit editor
o Type source .bashrc

* RuniTOUGH2
o Open a Terminal (E)

o Change to the directory with the sample problems, e.g.:
cd ~/iTOUGH2/Exercises/Darcy

o Type itough?2 to see command usage and command line arguments
o Run iTOUGH?2 by typing:
itough?2 darcyli darcy 3 &

* Edit and view input and output files
o Use any text editor (vi, emacs, TextEdit, ...) to edit and view iTOUGH?2
input and output files. Use font Courier and a screen width of at least
132 columns.



Installation on PC

Copy the contents of the iTOUGH?2 flash drive to your hard drive, maintaining the
directory structure.
There are two ways to install and run iTOUGH2:
o Option 1:
* Copy the relevant executable (e.g., it2 3.exe for EOS3) from
directory ...\1TOUGH2\Executables to the working
directory where all the input files are located (e.g.,
...\1TOUGH2\Exercises\Darcy)
= Double-click on the executable
= Enter the iTOUGH2 input file name (e.g. darcyli)
= Enter the TOUGH?2 input file name (e.g. darcy)

o Option 2:

= Add directory that contains the i tough2 .bat batch file to
command search path:

* Locate path to directory Executable, typically:
C:\1TOUGH2\Execuatbles

*  Open START, Control Panel, System

* Open tab Advanced, click on Environment Variables

* Under System variables, scroll to PATH, select it and click
on Edit

* Go to the end of the line and append a semicolon “;”
followed by the full path to the directory
iTOUGH2\Executable; click OK

= Open a DOS-PROMPT window
o START, Run...
* Enter cmd

=  RuniTOUGH2
* Change to the drive where you installed iTOUGH?2 (e.g.,
type C:)
* Change to the directory with the sample problems, e.g.:
cd C:\1iTOUGH2\Exercises\Darcy

* Run iTOUGH2 by typing:
itough?2 darcyli darcy 3

Edit and view input and output files
o Use any text editor (edit, Notepad, TextPad, WordPad, ...) to edit and
view iTOUGH2 input and output files. Use font Courier and a screen
width of at least 132 columns.
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Short Course

BERKELEY LAB

Solving Simulation-Optimization Problems Using iTOUGH2

iTOUGH2 Command Index

see also

Finsterle S., iTOUGH2 Command Reference,
Report LBNL-40041, Lawrence Berkeley National Laboratory, Berkeley California, 1999.

or
http://esd.lbl.gov/ITOUGH?2/Command/command.html

GENERAL

> ECHO ON/OFF
HELP
INCLUDE FILE: file name
#
/*
*/
PARAMETERS

> PARAMETER

>> ABSOLUTE PERMEABILITY
>> BIOT

>> BOTTOMHOLE PRESSURE
>> BOX-COX

>> BULK DENSITY

>> CAPACITY

>> CAPILLARY PRESSURE FUNCTION
>> COMPRESSIBILITY

>> CONDUCTIVITY (WET/DRY)
>> DILATION

>> DRIFT

>> ENTHALPY

>> EXTERNAL



>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>

FACTOR

FRICTION ANGLE

FRICTION CORRECTION FACTOR
FRICTION FACTOR

FORCHHEIMER
GEOT
GUESS (FILE: file name)

HARDENING

IF'S

INITIAL (PRESSURE/: ipv)
KLINKENBERG
KURTOSIS

LAG

LIST

MINC

PARALLEL PLATE
PARMULT

PARSHIFT

PEST

POISSON

POROSITY
PRODUCTIVITY INDEX
PUMPING RATIO

RATE

REFLECTION

REGION (SINK/SOURCE, PERMEABILITY,
REGRESSION

REGULARIZATION (FILE: file name)

RELATIVE PERMEABILITY FUNCTION

SCALE

SELEC

SHEAR

SHIFT
SKEWNESS
SKIN

STRAIN

TIME
TORTUOSITY
USER (: anno)
VOID FRACTION
YIELD

YOUNG

OBSERVATION)

(BETA: beta)



>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

DEFAULT

LIST

MATERIAL: mat name (mat name i...) (+ iplus)

MODEL

NONE

ROCK:

SET:

SINK:

mat name (mat name 1i...) (+ iplus)
iset
sink name (sink name i ...) (+ iplus)

SOURCE: source name (source name 1 ...) (+ iplus)

>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>

ANNOTATION: anno
BOUND: lower upper
DEVIATION: sigma
FACTOR

GAUSS

GUESS: guess
INACTIVE

INDEX: index (index i ...)
LOGARITHM

LOG (F)

NORMAL

PARAMETER: index (index 1 ...)
PERTURB: (-)alpha (%)
PRIOR: prior info
RANGE: lower upper
STEP: max step
UNIFORM

VALUE

VARIANCE: sigma”2
VARIATION: sigma
WEIGHT: 1/sigma



OBSERVATIONS

> OBSERVATION
>> CONCENTRATION (comp name/COMPONENT: Icomp)
(phase name/PHASE: iphase) (CHANGE/DELTA)
>> CONTENT (phase_name/PHASE: iphase) (CHANGE/DELTA)
>> COVARIANCE (FILE: filename)
>> CUMULATIVE (comp name/COMPONENT: icomp)
(phase name/PHASE: iphase) (CHANGE/DELTA)
>> DRAWDOWN (phase name/PHASE: iphase)
>> ENTHALPY (phase_name/PHASE: iphase) (CHANGE/DELTA) (WELLHEAD)
>> FLOW (phase name/PHASE: iphase)
(component name/COMPONENT: icomponent) (HEAT)
(CHANGE/DELTA)
>> GENERATION (comp name/COMPONENT: icomp)
(phase name/PHASE: iphase) (CHANGE/DELTA)
>> HUMIDITY (CHANGE/DELTA)
>> MASS FRACTION (comp name/COMPONENT: Icomp)
(phase name/PHASE: iphase) (CHANGE/DELTA)
>> MOLE FRACTION (comp name/COMPONENT: Icomp)
(phase name/PHASE: iphase) (CHANGE/DELTA)
>> MOMENT (FIRST/SECOND) (X/Y/Z) (CHANGE/DELTA)
(comp_name/COMPONENT:icomp) (phase_name/PHASE: iphase)
>> PEST (CHANGE/DELTA)
>> PRESSURE (CAPILLARY) (CHANGE/DELTA) (WELLHEAD/BOTTOMHOLE)
(phase name/PHASE: iphase)
>> PRODUCTION (comp name/COMPONENT: icomp)
(phase name/PHASE: iphase) (CHANGE/DELTA)
>> REGULARIZATION (FILE: file name) (BETA: beta) (CHANGE/DELTA)
>> RESTART TIME: ntime (time unit) (NEW)
>> SATURATION (phase_name/PHASE: iphase) (CHANGE/DELTA)
>> SECONDARY (phase_name/PHASE: iphase) (: ipar) (CHANGE/DELTA)
>> STEAM QUALITY (CHANGE/DELTA)
>> TEMPERATURE (CHANGE/DELTA) (WELLHEAD)
>> TIME: ntime (EQUAL/LOGARITHMIC) (time unit)
>> TIMES from DATA/OBSERVATIONS
>> TOTAL MASS (comp name/COMPONENT: icomp)
(phase name/PHASE: iphase) (CHANGE/DELTA)
>> USER (: anno) (CHANGE/DELTA)
>> VOLUME (phase_name/PHASE: iphase) (CHANGE/DELTA)
>> WATERTABLE (CHANGE/DELTA)



>>>

>>>

>>>
>>>
>>>

>>>
>>>
>>>
>>>
>>>

CONNECTION: eleml elem2 (elem i elem j
(++/+-/-+ iplus)
CONNECTION COORDINATES
X1 Y1l Z1
CONNECTION PROFILE/CROSS-SECTION/MAP
ELEMENT: elem (elem i ...)
ELEMENT COORDINATES
X1 Y1l Z1
ELEMENT PROFILE/CROSS-SECTION/MAP
MODEL
NONE
SINK: sink name
SOURCE:

(+ iplus)

(sink namei ...)
source name (source namei ...)
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>

ABSOLUTE
ANNOTATION: anno
AUTO (ADD NOISE)
AVERAGE (VOLUME)
BOX-COX: Iambda
COLUMN: itime idata (istd dev)
COMPONENT comp name/: icomp

DATA (time unit) (FILE: file name)
DEVIATION: sigma (ADD NOISE)
FACTOR: factor

FORMAT :
HEADER:
INDEX: index (index i ...)
KURTOSIS

LOGARITHM

MEAN (VOLUME)

PARAMETER:
PHASE phase name/: iphase
PICK: npick
POLYNOM: idegree
REGRESSION:
RELATIVE:
SET: iset
SHIFT: shift
SKEWNESS
SKIP:
SUM
USER
VARIANCE: sigma”2 (ADD NOISE)
WEIGHT: 1/sigma (ADD NOISE)
WINDOW (INDIVIDUAL/:

format
nskip

index (index i ...)

(time unit)
rho

rel err (%) (ADD NOISE)

(TIME (time unit))

nskip

time A time B

(BOX/ELLIPSOID/CYLINDER/CUBE)
(X2 Y2 z2 (R)/(AZIMUTH DIP PLUNGE))

(BOX/ELLIPSOID/CYLINDER/CURBE)
(X2 Y2 z2 (R)/(AZIMUTH DIP PLUNGE))

(ROTATE) :

(ROTATE) :

(+ iplus)
(+ iplus)

(time unit))



COMPUTATION

> COMPUTATION

>> CONVERGE/STOP/TOLERANCE

>>

>>

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

ADJUST

ABORT (NO)
CONSECUTIVE: max iterl
DELTFACT: deltfact

DIRECT

FORWARD

INCOMPLETE: max incomplete
INPUT

ITERATION: max iter

LEVENBERG: Iambda
LIST

MARQUARDT: nue
REDUCTION: max red
SIGNAL

SIMULATION: mtoughZ2
STEP: max step
UPHILL: max uphill
WARNING

ERROR

>>>
>>>
>>>
>>>
>>>
>>>

>>>
>>>
>>>
>>>
>>>
>>>

ALPHA: alpha (%)

EMPIRICAL (MATRIX: ndim (iTOUGHZ2)) (CORRELATION)

FISHER

FOSM (MATRIX: ndim (iTOUGH2)) (CORRELATION) (DIAGONAL)

HESSIAN

LATIN HYPERCUBE (CORRELATION/COVARIANCE) (DIAGONAL)
(MATRIX: ndim (iTOUGH2))

LINEARITY (: alpha (%))

LIST

MONTE CARLO (SEED: iseed) (GENERATE) (CLASS: nclass)

POSTERIORI

PRIORTI

TAU: (-)niter

JACOBIAN

>>>
>>>
>>>
>>>
>>>

CENTER

FORWARD (: iswitch)
HESSIAN

LIST

PERTURB: (-)perturb (

o°
-



>> OPTION

>>>
>>>

>>>
>>>
>>>
>>>
>>>
>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>
>>>

>>>
>>>

ANDREWS: ¢

ANNEAL

>>>> ITERATION: max iter
>>>> SCHEDULE: beta

>>>> STEP: max step

>>>> TEMPERATURE: (-) temp0

CAUCHY
DESIGN
DIRECT
FORWARD
GAUSS-NEWTON
GRID SEARCH (: ninvall (ninval2 (inval3)) /
FILE: filename) (UNSORTED)
L1-ESTIMATOR
LEAST-SQUARE
LEVENBERG-MARQUARDT (IDENTITY/EIGENVALUE)
(SUPER/TRUNCATED (: (-) truncation))
OBJECTIVE (: ninvall (ninval2 (inval3))
FILE: filename) (UNSORTED)
PARALLEL: ncores (JACOBIAN / LEVENBERG: ncoreslm)
(SLEEP: isleep)
PEST
>>>> DECPOINT: POINT/NOPOINT
>>>> EXECUTABLE: file (BEFORE/AFTER)
>>>> INSTRUCTION: num_instruction files
>>>> PRECISION: SINGLE/DOUBLE
>>>> TEMPLATE: num_template files
PVM: nhosts (JACOBIAN / LEVENBERG: nprocslm)
(SLEEP: isleep) (FILE: node-file)
QUADRATIC-LINEAR: c

SELECT/SUPER

>>>> CORRELATION: (-)rcorr

>>>> IMMOBILIZATION (: ofredmin)
>>>> ITERATION: niter

>>>> SENSITIVITY: (-)rsens

>>>> TRUNCATE (: (-)truncation)
SENSITIVITY

SEP (KURTOSIS: sepkurt) (SKEWNESS: sepskew)



